LeetCode 110 Balanced Binary Treenode
Given a binary tree, determine if it is height-balanced.函數
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
題意:
判斷一顆二叉樹是不是平衡二叉樹,平衡二叉樹的定義爲,每一個節點的左右子樹深度相差小於1.this
Example 1:code
Given the following tree [3,9,20,null,null,15,7]
:遞歸
3 / \ 9 20 / \ 15 7
Return true.ip
Example 2:leetcode
Given the following tree [1,2,2,3,3,null,null,4,4]
:get
1 / \ 2 2 / \ 3 3 / \ 4 4
Return false.it
Solution 1:
這是和求最大深度的結合在一塊兒,能夠考慮寫個helper函數找到拿到左右子樹的深度,而後遞歸調用isBalanced函數判斷左右子樹是否也是平衡的,獲得最終的結果。時間複雜度O(n^2)io
public boolean isBalanced(TreeNode root) { if (root == null) { return true; } int leftDep = depthHelper(root.left); int rightDep = depthHelper(root.right); if (Math.abs(leftDep - rightDep) <= 1 && isBalanced(root.left) && isBalanced(root.right)) { return true; } return false; } private int depthHelper(TreeNode root) { if (root == null) { return 0; } return Math.max(depthHelper(root.left), depthHelper(root.right)) + 1; }
Solution 2:
解題思路:
再來看個O(n)的遞歸解法,相比上面的方法要更巧妙。二叉樹的深度若是左右相差大於1,則咱們在遞歸的helper函數中直接return -1,那麼咱們在遞歸的過程當中獲得左子樹的深度,若是=-1,就說明二叉樹不平衡,也獲得右子樹的深度,若是=-1,也說明不平衡,若是左右子樹之差大於1,返回-1,若是都是valid,則每層都以最深的子樹深度+1返回深度。
public boolean isBalanced(TreeNode root) { return dfsHeight(root) != -1; } //helper function, get the height public int dfsHeight(TreeNode root){ if (root == null) { return 0; } int leftHeight = dfsHeight(root.left); if (leftHeight == -1) { return -1; } int rightHeight = dfsHeight(root.right); if (rightHeight == -1) { return -1; } if (Math.abs(leftHeight - rightHeight) > 1) { return -1; } return Math.max(leftHeight, rightHeight) + 1; }