Codeforces Round #450 (Div. 2)

D. Unusual Sequences

分析

若是至少有一組解,則要 \(y\)\(x\) 整除,也就是說 \(a_i\) 必定是 \(x\) 的倍數,可設 \(dp[i]\) 爲 和爲 \(i\)\(gcd = 1\) 時的方案數,首先呢,若是不考慮 \(gcd\) 的限制,能夠發現,\(dp[i]=1<<(i-1)\) ,那麼咱們只要減去那些 \(gcd > 1\) 的方案數,枚舉因子就行了,記憶化搜索便可。c++

code

#include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
long long p2(int x) {
    long long a = 1, k = 2;
    while (x) {
        if (x & 1) a = a * k % MOD;
        k = k * k % MOD;
        x >>= 1;
    }
    return a;
}
map<int, long long> dp;
long long dfs(int x) {
    if (dp.count(x)) return dp[x];
    long long res = p2(x - 1);
    for (int i = 1; i * i <= x; i++) {
        if (x % i == 0) {
            if (i != 1) {
                res = (res - dfs(x / i) + MOD) % MOD;
            }
            if(i * i != x) res = (res - dfs(i) + MOD) % MOD;
        }
    }
    return dp[x] = res;
}
int main() {
    dp[1] = 1;
    int x, y, n;
    long long ans = 0;
    cin >> x >> y;
    if (y % x == 0) {
        ans = dfs(y / x);
    }
    cout << ans << endl;
    return 0;
}

E. Maximum Questions

分析

\(dp[i]\) 表示從 \(i\) 開始(\(s[i...n-1]\))所能構成的不相交 \(t\) 串的最多個數,並維護最小花費 \(mn[i]\)spa

code

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
string s;
int dp[N], mn[N], ab[N];
int main() {
    int n, m, k = 0;
    cin >> n >> s >> m;
    for (int i = n - 1; i >= 0; i--) {
        if(s[i] == '?') k++;
        if(s[i] == '?' || s[i] == 'a') {
            if(s[i + 1] == 'b' || s[i + 1] == '?') ab[i] = ab[i + 2] + 2;
            else ab[i] = 1;
        }
        if(n - i >= m) {
            dp[i] = dp[i + 1];
            mn[i] = mn[i + 1];
            if(ab[i] >= m) {
                if(dp[i + m] + 1 > dp[i]) {
                    dp[i] = dp[i + m] + 1;
                    mn[i] = mn[i + m] + k;
                } else if(dp[i + m] + 1 == dp[i]) {
                    mn[i] = min(mn[i], mn[i + m] + k);
                }
            }
            if(s[i + m - 1] == '?') k--;
        }
    }
    cout << mn[0] << endl;
    return 0;
}
相關文章
相關標籤/搜索