具體內容,直接看註釋吧,該註釋的我都註釋掉了。code
# coding:utf-8 import cv2 # 待檢測的圖片路徑 imagepath = r'D://greenhat//2.jpg' # 獲取訓練好的人臉的參數數據,這裏直接從GitHub上使用默認值,須要本身去下載 face_cascade = cv2.CascadeClassifier(r'D://greenhat//haarcascade_frontalface_default.xml') # 讀取圖片 image = cv2.imread(imagepath) gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) # 填上綠帽子的地址 gh = cv2.imread(r'D://greenhat//gh.png') # 探測圖片中的人臉 faces = face_cascade.detectMultiScale( gray, scaleFactor = 1.022,#需>1,越小的話,檢測越寬泛,調整參數用 minNeighbors = 5, minSize = (20,20),#最小腦殼 ) print("發現{0}我的臉!".format(len(faces))) for(x,y,w,h) in faces: gh2 = cv2.resize(gh, (0,0), fx=0.3, fy=0.3) sp = gh2.shape for x1 in range(0,sp[0]): for y1 in range(0,sp[1]): # 去掉白顏色,只留下綠顏色,直接特判RGB if gh2[x1,y1,1]-gh2[x1,y1,0] > 60 and gh2[x1,y1,2] - gh2[x1,y1,1] > 7: image[y-w+x1+12,x+y1]=gh2[x1,y1] # 利用自帶的畫綠帽子 #cv2.rectangle(image,(x,y-3),(x+w,y),(0,255,0),thickness=3) #cv2.circle(image,(x+int(w/2),y-4),2,(0,255,0),10) cv2.imshow("Find Faces!",image) cv2.waitKey(0)