// begin {AC auto machine} const int MAXN_NODE = 5e5 + 7; const int MAXN_CHAR = 128; int ch[MAXN_NODE][MAXN_CHAR], fail[MAXN_NODE], val[MAXN_NODE], last[MAXN_NODE], sz; inline int idx(char c) {return (int)c;} void insert(char *s, int v) { int u = 0, n = strlen(s); for(int i = 0; i < n; ++i) { int c = idx(s[i]); if(!ch[u][c]) { memset(ch[sz], 0, sizeof(ch[sz])); //val[sz] = 0; ch[u][c] = sz++; } u = ch[u][c]; } val[u] = v; } std::queue<int>q; void get_fail() { fail[0] = 0; for(int c = 0; c < MAXN_CHAR; ++c) { int u = ch[0][c]; if(u) {fail[u] = 0; q.push(u), last[u] = 0;} } // BFS while(!q.empty()) { int r = q.front(); q.pop(); for(int c = 0; c < MAXN_CHAR; ++c) { int u = ch[r][c]; if(!u) {ch[r][c] = ch[fail[r]][c]; continue;} q.push(u); int v = fail[r]; while(v && !ch[v][c]) v = fail[v]; fail[u] = ch[v][c]; last[u] = val[fail[u]] ? fail[u] : last[fail[u]]; } } } void print(int j) { if(j) { //printf("%d:%d\n",j,val[j]); print(last[j]); ans[val[j]] ++; } } void find(char *T) { int n = strlen(T), j = 0; for(int i = 0; i < n; ++i) { int c = idx(T[i]); j = ch[j][c]; if(val[j]) print(j); else if(last[j]) print(last[j]); } } void init() { sz = 1; memset(ch[0], 0, sizeof(ch[0])); memset(val, 0, sizeof(val)); } // end {AC auto machine}
下面代碼針對頻繁調用 print 進行了優化,沒有當即沿suffix link 更新,而是最後自底向根root更新統計值php
// begin {ac-automation} const int MAXN = 3e5 + 7; const int SIGMA_SIZE = 26; struct ac_automation { struct node {int next[SIGMA_SIZE], fail, val;}; node nod[MAXN]; int length, pos[MAXN], st[MAXN], top; inline void init() { length = top = 0; newNode(); } inline int newNode() { node &p = nod[length]; p.val = p.fail = 0; memset(p.next, 0, SIGMA_SIZE * 4); return length++; } inline int idx(char c) {return c - 'a';} void insert(char *s, int id) { int cur = 0, k ; for(; *s; ++s) { k = idx(s[0]); node &p = nod[cur]; if(!p.next[k]) p.next[k] = newNode(); cur = p.next[k]; } pos[id] = cur; } std::queue<int>Q; void get_fail() { int cur = 0; for(register int i = 0; i < SIGMA_SIZE; ++i) { node &p = nod[cur]; if(p.next[i]) Q.push(p.next[i]); } while(!Q.empty()) { cur = Q.front(); Q.pop(); for(int i = 0; i < SIGMA_SIZE; ++i) { node &p = nod[cur]; if(p.next[i]) { int &e = p.next[i], &j = p.fail; nod[e].fail = nod[j].next[i]; Q.push(e); st[++top] = e; } else p.next[i] = nod[p.fail].next[i]; } } } void find(char *s) { int now = 0; for(; *s; ++s) { int k = idx(s[0]); now = nod[now].next[k]; nod[now].val ++; } int tmp = top, p; while(tmp) { p = st[tmp]; nod[nod[p].fail].val += nod[p].val; tmp --; } } }; // end {ac-automation}
題目連接:http://lightoj.com/volume_showproblem.php?problem=1427node
給出的模板串會有重複,記錄每一個串在 \(Trie\) 中的位置 pos , \(Trie\) 中節點統計有次數 \(val\) 輸出便可ios
#include <stdio.h> #include <cstring> #include <algorithm> #include <queue> // begin {ac-automation} const int MAXN = 3e5 + 7; const int SIGMA_SIZE = 26; struct ac_automation { struct node {int next[SIGMA_SIZE], fail, val;}; node nod[MAXN]; int length, pos[MAXN], st[MAXN], top; inline void init() { length = top = 0; newNode(); } inline int newNode() { node &p = nod[length]; p.val = p.fail = 0; memset(p.next, 0, sizeof(p.next)); return length++; } inline int idx(char c) {return c - 'a';} void insert(char *s, int id) { int cur = 0, k ; for(; *s; ++s) { k = idx(s[0]); node &p = nod[cur]; if(!p.next[k]) p.next[k] = newNode(); cur = p.next[k]; } pos[id] = cur; } std::queue<int>Q; void get_fail() { int cur = 0; for(register int i = 0; i < SIGMA_SIZE; ++i) { node &p = nod[cur]; if(p.next[i]) Q.push(p.next[i]); } while(!Q.empty()) { cur = Q.front(); Q.pop(); for(int i = 0; i < SIGMA_SIZE; ++i) { node &p = nod[cur]; if(p.next[i]) { int &e = p.next[i], &j = p.fail; nod[e].fail = nod[j].next[i]; Q.push(e); st[++top] = e; } else p.next[i] = nod[p.fail].next[i]; } } } void find(char *s) { int now = 0; for(; *s; ++s) { int k = idx(s[0]); now = nod[now].next[k]; nod[now].val ++; } int tmp = top, p; while(tmp) { p = st[tmp]; nod[nod[p].fail].val += nod[p].val; tmp --; } } }; // end {ac-automation} ac_automation ac; const int MAX_t = 1e6 + 7; char t[MAX_t], s[500 + 7]; int main() { int T, n; scanf("%d", &T); for(int i = 0; i < T; ++i) { ac.init(); scanf("%d", &n); getchar(); gets(t); for(int j = 0; j < n; ++j) { gets(s); ac.insert(s, j + 1); } ac.get_fail(); ac.find(t); printf("Case %d:\n", i + 1); for(int j = 0; j < n; ++j) printf("%d\n", ac.nod[ac.pos[j + 1]].val); } return 0; }
#include <stdio.h> #include <cstring> #include <algorithm> #include <bitset> #include <queue> std::bitset<500+7>vis; // begin{Ac_Automation} const int max_node = 5e5 + 7; const int sigma_size = 128; int ch[max_node][sigma_size], val[max_node], sz; int fail[max_node], last[max_node]; inline int idx(char c) {return (int)c;} void insert(char *s, int v = 1) { int u = 0, n = strlen(s); for(int i = 0; i < n; ++i) { int c = idx(s[i]); if(!ch[u][c]) { memset(ch[sz], 0, sizeof(ch[sz])); //val[sz] = 0; ch[u][c] = sz++; } u = ch[u][c]; } val[u] = v; } std::queue<int>q; void get_fail() { fail[0] = 0; for(int c = 0; c < sigma_size; ++c) { int u = ch[0][c]; if(u) {fail[u] = 0; q.push(u), last[u] = 0;} } // BFS while(!q.empty()) { int r = q.front(); q.pop(); for(int c = 0; c < sigma_size; ++c) { int u = ch[r][c]; if(!u) {ch[r][c] = ch[fail[r]][c]; continue;} q.push(u); int v = fail[r]; while(v && !ch[v][c]) v = fail[v]; fail[u] = ch[v][c]; last[u] = val[fail[u]] ? fail[u] : last[fail[u]]; } } } void print(int j) { if(j) { //printf("%d:%d\n",j,val[j]); print(last[j]); vis[val[j]] = true;; } } void find(char *T) { int n = strlen(T), j = 0; for(int i = 0; i < n; ++i) { int c = idx(T[i]); j = ch[j][c]; if(val[j]) print(j); else if(last[j]) print(last[j]); } } void init() { sz = 1; memset(ch[0], 0, sizeof(ch[0])); memset(val, 0, sizeof(val)); } // end{Ac_Automation} char s[10000007]; void solve() { init(); int n; scanf("%d", &n); getchar(); for(int i = 0; i < n; i++) {gets(s); insert(s, i + 1);} get_fail(); int ret = 0; scanf("%d", &n); getchar(); for(int i = 0; i < n; ++i) { gets(s);vis.reset();find(s); if(vis.any()) { printf("web %d:", i + 1); ret++; for(int j = 0; j < 500; ++j) { if(vis[j+1]) printf(" %d", j+1); } puts(""); } } printf("total: %d\n", ret); } int main() {solve(); return 0;}
#pragma comment(linker, "/STACK:36777216") //#pragma GCC optimize ("O2") #define LOCAL //#include "testlib.h" #include <functional> #include <algorithm> #include <iostream> #include <fstream> #include <sstream> #include <iomanip> #include <numeric> #include <cstring> #include <climits> #include <cassert> #include <complex> #include <cstdio> #include <string> #include <vector> #include <bitset> #include <queue> #include <stack> #include <cmath> #include <ctime> #include <list> #include <set> #include <map> //#include <tr1/unordered_set> //#include <tr1/unordered_map> //#include <array> using namespace std; #define REP(i, n) for (int i=0;i<n;++i) #define FOR(i, a, b) for (int i=a;i<b;++i) #define DWN(i, b, a) for (int i=b-1;i>=a;--i) #define REP_1(i, n) for (int i=1;i<=n;++i) #define FOR_1(i, a, b) for (int i=a;i<=b;++i) #define DWN_1(i, b, a) for (int i=b;i>=a;--i) #define REP_C(i, n) for (int n____=n,i=0;i<n____;++i) #define FOR_C(i, a, b) for (int b____=b,i=a;i<b____;++i) #define DWN_C(i, b, a) for (int a____=a,i=b-1;i>=a____;--i) #define REP_N(i, n) for (i=0;i<n;++i) #define FOR_N(i, a, b) for (i=a;i<b;++i) #define DWN_N(i, b, a) for (i=b-1;i>=a;--i) #define REP_1_C(i, n) for (int n____=n,i=1;i<=n____;++i) #define FOR_1_C(i, a, b) for (int b____=b,i=a;i<=b____;++i) #define DWN_1_C(i, b, a) for (int a____=a,i=b;i>=a____;--i) #define REP_1_N(i, n) for (i=1;i<=n;++i) #define FOR_1_N(i, a, b) for (i=a;i<=b;++i) #define DWN_1_N(i, b, a) for (i=b;i>=a;--i) #define REP_C_N(i, n) for (int n____=(i=0,n);i<n____;++i) #define FOR_C_N(i, a, b) for (int b____=(i=0,b);i<b____;++i) #define DWN_C_N(i, b, a) for (int a____=(i=b-1,a);i>=a____;--i) #define REP_1_C_N(i, n) for (int n____=(i=1,n);i<=n____;++i) #define FOR_1_C_N(i, a, b) for (int b____=(i=a,b);i<=b____;++i) #define DWN_1_C_N(i, b, a) for (int a____=(i=b,a);i>=a____;--i) #define ECH(it, A) for (__typeof((A).begin()) it=(A).begin(); it != (A).end(); ++it) #define rECH(it, A) for (__typeof((A).rbegin()) it=(A).rbegin(); it != (A).rend(); ++it) #define REP_S(i, str) for (char*i=str;*i;++i) #define REP_L(i, hd, suc) for (int i=hd;i;i=suc[i]) #define REP_G(i, u) REP_L(i,hd[u],suc) #define REP_SS(x, s) for (int x=s;x;x=(x-1)&s) #define DO(n) for ( int ____n = n; ____n-->0; ) #define REP_2(i, j, n, m) REP(i, n) REP(j, m) #define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m) #define REP_3(i, j, k, n, m, l) REP(i, n) REP(j, m) REP(k, l) #define REP_3_1(i, j, k, n, m, l) REP_1(i, n) REP_1(j, m) REP_1(k, l) #define REP_4(i, j, k, ii, n, m, l, nn) REP(i, n) REP(j, m) REP(k, l) REP(ii, nn) #define REP_4_1(i, j, k, ii, n, m, l, nn) REP_1(i, n) REP_1(j, m) REP_1(k, l) REP_1(ii, nn) #define ALL(A) A.begin(), A.end() #define LLA(A) A.rbegin(), A.rend() #define CPY(A, B) memcpy(A, B, sizeof(A)) #define INS(A, P, B) A.insert(A.begin() + P, B) #define ERS(A, P) A.erase(A.begin() + P) #define LBD(A, x) (lower_bound(ALL(A), x) - A.begin()) #define UBD(A, x) (upper_bound(ALL(A), x) - A.begin()) #define CTN(T, x) (T.find(x) != T.end()) #define SZ(A) int((A).size()) #define PB push_back #define MP(A, B) make_pair(A, B) #define PTT pair<T, T> #define Ts *this #define rTs return Ts #define fi first #define se second #define re real() #define im imag() #define Rush for(int ____T=int(RD()); ____T--;) #define Display(A, n, m) { \ REP(i, n){ \ REP(j, m-1) cout << A[i][j] << " "; \ cout << A[i][m-1] << endl; \ } \ } #define Display_1(A, n, m) { \ REP_1(i, n){ \ REP_1(j, m-1) cout << A[i][j] << " "; \ cout << A[i][m] << endl; \ } \ } typedef long long LL; //typedef long double DB; typedef double DB; typedef unsigned uint; typedef unsigned long long ULL; typedef vector<int> VI; typedef vector<char> VC; typedef vector<string> VS; typedef vector<LL> VL; typedef vector<DB> VF; typedef set<int> SI; typedef set<string> SS; typedef map<int, int> MII; typedef map<string, int> MSI; typedef pair<int, int> PII; typedef pair<LL, LL> PLL; typedef vector<PII> VII; typedef vector<VI> VVI; typedef vector<VII> VVII; template<class T> inline T& RD(T &); template<class T> inline void OT(const T &); //inline int RD(){int x; return RD(x);} inline LL RD() {LL x; return RD(x);} inline DB& RF(DB &); inline DB RF() {DB x; return RF(x);} inline char* RS(char *s); inline char& RC(char &c); inline char RC(); inline char& RC(char &c) {scanf(" %c", &c); return c;} inline char RC() {char c; return RC(c);} //inline char& RC(char &c){c = getchar(); return c;} //inline char RC(){return getchar();} template<class T> inline T& RDD(T &); inline LL RDD() {LL x; return RDD(x);} template<class T0, class T1> inline T0& RD(T0 &x0, T1 &x1) {RD(x0), RD(x1); return x0;} template<class T0, class T1, class T2> inline T0& RD(T0 &x0, T1 &x1, T2 &x2) {RD(x0), RD(x1), RD(x2); return x0;} template<class T0, class T1, class T2, class T3> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3) {RD(x0), RD(x1), RD(x2), RD(x3); return x0;} template<class T0, class T1, class T2, class T3, class T4> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4) {RD(x0), RD(x1), RD(x2), RD(x3), RD(x4); return x0;} template<class T0, class T1, class T2, class T3, class T4, class T5> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5) {RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5); return x0;} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6) {RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6); return x0;} template<class T0, class T1> inline void OT(const T0 &x0, const T1 &x1) {OT(x0), OT(x1);} template<class T0, class T1, class T2> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2) {OT(x0), OT(x1), OT(x2);} template<class T0, class T1, class T2, class T3> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3) {OT(x0), OT(x1), OT(x2), OT(x3);} template<class T0, class T1, class T2, class T3, class T4> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4) {OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5) {OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5, const T6 &x6) {OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);} inline char& RC(char &a, char &b) {RC(a), RC(b); return a;} inline char& RC(char &a, char &b, char &c) {RC(a), RC(b), RC(c); return a;} inline char& RC(char &a, char &b, char &c, char &d) {RC(a), RC(b), RC(c), RC(d); return a;} inline char& RC(char &a, char &b, char &c, char &d, char &e) {RC(a), RC(b), RC(c), RC(d), RC(e); return a;} inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f) {RC(a), RC(b), RC(c), RC(d), RC(e), RC(f); return a;} inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f, char &g) {RC(a), RC(b), RC(c), RC(d), RC(e), RC(f), RC(g); return a;} inline DB& RF(DB &a, DB &b) {RF(a), RF(b); return a;} inline DB& RF(DB &a, DB &b, DB &c) {RF(a), RF(b), RF(c); return a;} inline DB& RF(DB &a, DB &b, DB &c, DB &d) {RF(a), RF(b), RF(c), RF(d); return a;} inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e) {RF(a), RF(b), RF(c), RF(d), RF(e); return a;} inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f) {RF(a), RF(b), RF(c), RF(d), RF(e), RF(f); return a;} inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f, DB &g) {RF(a), RF(b), RF(c), RF(d), RF(e), RF(f), RF(g); return a;} inline void RS(char *s1, char *s2) {RS(s1), RS(s2);} inline void RS(char *s1, char *s2, char *s3) {RS(s1), RS(s2), RS(s3);} template<class T0, class T1>inline T0& RDD(T0&a, T1&b) {RDD(a), RDD(b); return a;} template<class T0, class T1, class T2>inline T1& RDD(T0&a, T1&b, T2&c) {RDD(a), RDD(b), RDD(c); return a;} template<class T> inline void RST(T &A) {memset(A, 0, sizeof(A));} template<class T> inline void FLC(T &A, int x) {memset(A, x, sizeof(A));} template<class T> inline void CLR(T &A) {A.clear();} template<class T0, class T1> inline void RST(T0 &A0, T1 &A1) {RST(A0), RST(A1);} template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2) {RST(A0), RST(A1), RST(A2);} template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3) {RST(A0), RST(A1), RST(A2), RST(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4) {RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5) {RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6) {RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);} template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x) {FLC(A0, x), FLC(A1, x);} template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x);} template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x);} template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x), FLC(A6, x);} template<class T> inline void CLR(priority_queue<T, vector<T>, less<T> > &Q) {while(!Q.empty()) Q.pop();} template<class T> inline void CLR(priority_queue<T, vector<T>, greater<T> > &Q) {while(!Q.empty()) Q.pop();} template<class T> inline void CLR(stack<T> &S) {while(!S.empty()) S.pop();} template<class T> inline void CLR(queue<T> &Q) {while(!Q.empty()) Q.pop();} template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1) {CLR(A0), CLR(A1);} template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2) {CLR(A0), CLR(A1), CLR(A2);} template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3) {CLR(A0), CLR(A1), CLR(A2), CLR(A3);} template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4) {CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);} template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5) {CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);} template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6) {CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);} template<class T> inline void CLR(T &A, int n) {REP(i, n) CLR(A[i]);} template<class T> inline bool EPT(T &a) {return a.empty();} template<class T> inline T& SRT(T &A) {sort(ALL(A)); return A;} template<class T, class C> inline T& SRT(T &A, C B) {sort(ALL(A), B); return A;} template<class T> inline T& RVS(T &A) {reverse(ALL(A)); return A;} template<class T> inline T& UNQQ(T &A) {A.resize(unique(ALL(A)) - A.begin()); return A;} template<class T> inline T& UNQ(T &A) {SRT(A); return UNQQ(A);} /** Constant List .. **/ //{ const int MOD = 1e5;//int(1e9) + 7; //const int MOD = 19901013; const int INF = 0x3f3f3f3f; const LL INFF = 0x3f3f3f3f3f3f3f3fLL; const DB EPS = 1e-9; const DB OO = 1e20; const DB PI = acos(-1.0); //M_PI; const int dx[] = { -1, 0, 1, 0}; const int dy[] = {0, 1, 0, -1}; //} /** Add On .. **/ //{ // <<= '0. Nichi Joo ., //{ template<class T> inline bool checkMin(T &a, const T b) {return b < a ? a = b, 1 : 0;} template<class T> inline bool checkMax(T &a, const T b) {return a < b ? a = b, 1 : 0;} template <class T, class C> inline bool checkUpd(T& a, const T b, C c) {return c(b, a) ? a = b, 1 : 0;} template<class T> inline T min(T a, T b, T c) {return min(min(a, b), c);} template<class T> inline T max(T a, T b, T c) {return max(max(a, b), c);} template<class T> inline T min(T a, T b, T c, T d) {return min(min(a, b), min(c, d));} template<class T> inline T max(T a, T b, T c, T d) {return max(max(a, b), max(c, d));} template<class T> inline T min(T a, T b, T c, T d, T e) {return min(min(min(a, b), min(c, d)), e);} template<class T> inline T max(T a, T b, T c, T d, T e) {return max(max(max(a, b), max(c, d)), e);} template<class T> inline T sqr(T a) {return a * a;} template<class T> inline T cub(T a) {return a * a * a;} template<class T> inline T ceil(T x, T y) {return (x - 1) / y + 1;} template<class T> T abs(T x) {return x > 0 ? x : -x;} inline int sgn(DB x) {return x < -EPS ? -1 : x > EPS;} inline int sgn(DB x, DB y) {return sgn(x - y);} inline DB cos(DB a, DB b, DB c) {return (sqr(a) + sqr(b) - sqr(c)) / (2 * a * b);} inline DB cot(DB x) {return 1. / tan(x);}; inline DB sec(DB x) {return 1. / cos(x);}; inline DB csc(DB x) {return 1. / sin(x);}; //} // <<= '2. Number Theory .,//{ namespace NT { #define gcd __gcd inline LL lcm(LL a, LL b) {return a * b / gcd(a, b);} inline void INC(int &a, int b) {a += b; if(a >= MOD) a -= MOD;} inline int sum(int a, int b) {a += b; if(a >= MOD) a -= MOD; return a;} /* 模數兩倍恰好超 int 時。 inline int sum(uint a, int b){a += b; a %= MOD;if (a < 0) a += MOD; return a;} inline void INC(int &a, int b){a = sum(a, b);} */ inline void DEC(int &a, int b) {a -= b; if(a < 0) a += MOD;} inline int dff(int a, int b) {a -= b; if(a < 0) a += MOD; return a;} inline void MUL(int &a, int b) {a = (LL)a * b % MOD;} //inline int pdt(int a, int b){return (LL)a * b % MOD;} inline int pdt(int x, int y) { int ret; __asm__ __volatile__("\tmull %%ebx\n\tdivl %%ecx\n":"=d"(ret):"a"(x), "b"(y), "c"(MOD)); return ret; } inline int gcd(int m, int n, int &x, int &y) { x = 1, y = 0; int xx = 0, yy = 1, q; while(1) { q = m / n, m %= n; if(!m) {x = xx, y = yy; return n;} DEC(x, pdt(q, xx)), DEC(y, pdt(q, yy)); q = n / m, n %= m; if(!n) return m; DEC(xx, pdt(q, x)), DEC(yy, pdt(q, y)); } } inline int sum(int a, int b, int c) {return sum(a, sum(b, c));} inline int sum(int a, int b, int c, int d) {return sum(sum(a, b), sum(c, d));} inline int pdt(int a, int b, int c) {return pdt(a, pdt(b, c));} inline int pdt(int a, int b, int c, int d) {return pdt(pdt(a, b), pdt(c, d));} inline int pow(int a, LL b) { int c(1); while(b) { if(b & 1) MUL(c, a); MUL(a, a), b >>= 1; } return c; } template<class T> inline T pow(T a, LL b) { T c(1); while(b) { if(b & 1) c *= a; a *= a, b >>= 1; } return c; } template<class T> inline T pow(T a, int b) { return pow(a, (LL)b); } inline int _I(int b) { int a = MOD, x1 = 0, x2 = 1, q; while(1) { q = a / b, a %= b; if(!a) return x2; DEC(x1, pdt(q, x2)); q = b / a, b %= a; if(!b) return x1; DEC(x2, pdt(q, x1)); } } inline void DIV(int &a, int b) {MUL(a, _I(b));} inline int qtt(int a, int b) {return pdt(a, _I(b));} struct Int { int val; operator int() const {return val;} Int(int _val = 0): val(_val) { val %= MOD; if(val < 0) val += MOD; } Int(LL _val): val(_val) { _val %= MOD; if(_val < 0) _val += MOD; val = _val; } Int& operator +=(const int& rhs) {INC(val, rhs); rTs;} Int operator +(const int& rhs) const {return sum(val, rhs);} Int& operator -=(const int& rhs) {DEC(val, rhs); rTs;} Int operator -(const int& rhs) const {return dff(val, rhs);} Int& operator *=(const int& rhs) {MUL(val, rhs); rTs;} Int operator *(const int& rhs) const {return pdt(val, rhs);} Int& operator /=(const int& rhs) {DIV(val, rhs); rTs;} Int operator /(const int& rhs) const {return qtt(val, rhs);} Int operator-()const {return MOD - *this;} }; } using namespace NT;//} // <<= '7 Matrix Theory ..// namespace MT { const int N = 100; int n = 0; typedef int rec ; struct matrix { rec d[N][N]; void init(rec e = 0) {RST(d); if(e)REP(i, n) d[i][i] = e;} matrix(rec e = 0) {init(e);} matrix operator * (const matrix &rhs)const { matrix res; // REP(i,j,k,n,n,n) res.d[i][j] += d[i][k]*rhs.d[k][j]; REP_2(i, j, n, n) { LL tmp = 0; REP(k, n) tmp += (LL)d[i][k] * rhs.d[k][j];; res.d[i][j] = tmp % MOD; } return res; } matrix operator *= (const matrix &rhs) { (*this) = (*this) * rhs; } inline int res() { int res = 0; REP(i, n) INC(res, d[0][i]); return res; } inline matrix pow_sum(const matrix &a, ULL nn) { matrix t; REP_2(i, j, n, n) t.d[i][j] = t.d[i][j + n] = a.d[i][j]; FOR_C(i, n, n * 2) t.d[i][i] = 1; n <<= 1; t = pow(t, (LL)nn), n >>= 1; REP_2(i, j, n, n) t.d[i][j] = t.d[i][j + n]; return t; } template<class T> T pow_sum(T a, ULL nn) { int _n = n; n = 1; matrix t; t.d[0][0] = a; t = pow_sum(t, nn), n = _n; return t.d[0][0]; } }; }; /** I/O Accelerator Interface .. **/ //{ #define g (c=getchar()) #define d isdigit(g) #define p x=x*10+c-'0' #define n x=x*10+'0'-c #define pp l/=10,p #define nn l/=10,n template<class T> inline T& RD(T &x) { char c; while(!d); x = c - '0'; while(d)p; return x; } template<class T> inline T& RDD(T &x) { char c; while(g, c != '-' && !isdigit(c)); if(c == '-') {x = '0' - g; while(d)n;} else {x = c - '0'; while(d)p;} return x; } inline DB& RF(DB &x) { //scanf("%lf", &x); char c; while(g, c != '-' && c != '.' && !isdigit(c)); if(c == '-')if(g == '.') {x = 0; DB l = 1; while(d)nn; x *= l;} else {x = '0' - c; while(d)n; if(c == '.') {DB l = 1; while(d)nn; x *= l;}} else if(c == '.') {x = 0; DB l = 1; while(d)pp; x *= l;} else {x = c - '0'; while(d)p; if(c == '.') {DB l = 1; while(d)pp; x *= l;}} return x; } #undef nn #undef pp #undef n #undef p #undef d #undef g inline char* RS(char *s) { //gets(s); scanf("%s", s); return s; } LL last_ans; int Case; template<class T> inline void OT(const T &x) { //printf("Case #%d: ", ++Case); //printf("%lld\n", x); //printf("%.9f\n", x); printf("%d\n", x); //cout << x << endl; //last_ans = x; } //}/* .................................................................................................................................. */ namespace ACM { // Aho-Corasick Automaton const int L = 11, N = 10 * L, Z = 4; int trans[N][Z], fail[N], cnt[N], Q[N], u, cz, op, tot; char str[L]; int ord[128], n; inline int new_node() { RST(trans[tot]), fail[tot] = cnt[tot] = 0; return tot++; } #define v trans[u][c] #define f trans[fail[u]][c] inline void Build() { cz = op = u = 0; REP(c, Z) if(v) Q[op++] = v; while(cz < op) { u = Q[cz++]; REP(c, Z) if(v) fail[Q[op++] = v] = f, cnt[v] |= cnt[f]; else v = f; } } #define c ord[*cur] inline void Insert() { RS(str), u = 0; REP_S(cur, str) { if(cnt[v]) return ; if(!v) v = new_node(); u = v; } cnt[u] = 1; } #undef c #define u Q[i] #define H fail int Run() { op = 0; REP(i, tot) if(!cnt[i]) H[i] = op, Q[op++] = i; MT::n = tot; static MT::matrix A; A.init(); REP_2(i, c, op, Z) if(!cnt[v]) ++A.d[H[u]][H[v]]; return pow(A, n).res(); } void Init() { int m; RD(m, n), tot = 0, new_node(); DO(m) Insert(); Build(); } } using namespace ACM; int main() { ord['A'] = 0, ord['T'] = 1, ord['G'] = 2, ord['C'] = 3; Init(), OT(Run()); return 0; }
上面是島孃的代碼,真心快呀,改天好好學習下c++