JavaShuo
欄目
標籤
[cvpr2017]Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks
時間 2020-12-24
標籤
機器學習
欄目
HTML
简体版
原文
原文鏈接
優勢 與Task-Specific圖像訓練結構解耦合。 作者說因爲這個域適應是在像素級別上進行的( because our model maps one image to another at the pixel level),所以我們可以改變這個Task-Specific圖像訓練結構 在標籤域也可以同樣做到域適應 target domain和source domain的標籤域可以不一樣,targ
>>阅读原文<<
相關文章
1.
遷移學習-PixelDA-Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks
2.
Domain Adaptation 與 Generative Adversarial Network
3.
[cvpr2017]Adversarial Discriminative Domain Adaptation
4.
論文筆記:Conditional Coupled Generative Adversarial Networks for Zero-Shot Domain Adaptation
5.
Multi-Adversarial Domain Adaptation
6.
FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
7.
Domain Adaptation總結(2017.9)
8.
ADDA: Adversarial Discriminative Domain Adaptation
9.
Image-Image Domain Adaptation with Preserved Self-Similarity andDomain-Dissimilarity for Person Re-i
10.
Graphical Generative Adversarial Networks
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
W3C DOM Activities
-
W3C 教程
•
算法總結-廣度優先算法
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
networks
adversarial
generative
adaptation
pixel
level
domain
with+this
with...connect
with...as
HTML
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
升級Gradle後報錯Gradle‘s dependency cache may be corrupt (this sometimes occurs
2.
Smarter, Not Harder
3.
mac-2019-react-native 本地環境搭建(xcode-11.1和android studio3.5.2中Genymotion2.12.1 和VirtualBox-5.2.34 )
4.
查看文件中關鍵字前後幾行的內容
5.
XXE萌新進階全攻略
6.
Installation failed due to: ‘Connection refused: connect‘安卓studio端口占用
7.
zabbix5.0通過agent監控winserve12
8.
IT行業UI前景、潛力如何?
9.
Mac Swig 3.0.12 安裝
10.
Windows上FreeRDP-WebConnect是一個開源HTML5代理,它提供對使用RDP的任何Windows服務器和工作站的Web訪問
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
遷移學習-PixelDA-Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks
2.
Domain Adaptation 與 Generative Adversarial Network
3.
[cvpr2017]Adversarial Discriminative Domain Adaptation
4.
論文筆記:Conditional Coupled Generative Adversarial Networks for Zero-Shot Domain Adaptation
5.
Multi-Adversarial Domain Adaptation
6.
FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
7.
Domain Adaptation總結(2017.9)
8.
ADDA: Adversarial Discriminative Domain Adaptation
9.
Image-Image Domain Adaptation with Preserved Self-Similarity andDomain-Dissimilarity for Person Re-i
10.
Graphical Generative Adversarial Networks
>>更多相關文章<<