JavaShuo
欄目
標籤
展開型博弈
時間 2019-12-14
標籤
展開
博弈
简体版
原文
原文鏈接
對於任一正整數n, 一個n人展開型博弈(n-person extensive-form game)是對每一個結點和每一個枝都規定標號的一顆根數,且知足下列5個條件: 1.每一個非終結點有集{0,1,2,…,n}中的一個局中人標號(player label)。局中人標號爲0的結點稱爲機會結點(chance nodes)。集合{1,2,…,n}表示這個博弈的局中人集,而且對此集中的每一個i,具備局中人
>>阅读原文<<
相關文章
1.
博弈論——擴展式博弈
2.
博弈論——擴展式博弈(Extensive Game)
3.
基本博弈論(四大博弈+拓展nim)
4.
博弈論——非完全信息擴展式博弈
5.
博弈--尼姆博弈
6.
博弈論-Bash博弈
7.
博弈論模型總結
8.
經典博弈模型
9.
博弈論學習之巴什博弈,尼姆博弈, sg博弈
10.
博弈論模版(Bash博弈,Nim博弈,威佐夫博弈,SG打表)
更多相關文章...
•
Kotlin 擴展
-
Kotlin 教程
•
Swift 擴展
-
Swift 教程
•
PHP開發工具
•
Kotlin學習(二)基本類型
相關標籤/搜索
博弈
博弈論
零和博弈
展開
開展
博弈與社會
偉大的博弈
NoSQL教程
Hibernate教程
PHP教程
開發工具
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab新建分支後,android studio拿不到
2.
Android Wi-Fi 連接/斷開時間
3.
今日頭條面試題+答案,花點時間看看!
4.
小程序時間組件的開發
5.
小程序學習系列一
6.
[微信小程序] 微信小程序學習(一)——起步
7.
硬件
8.
C3盒模型以及他出現的必要性和圓角邊框/前端三
9.
DELL戴爾筆記本關閉觸摸板觸控板WIN10
10.
Java的long和double類型的賦值操作爲什麼不是原子性的?
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
博弈論——擴展式博弈
2.
博弈論——擴展式博弈(Extensive Game)
3.
基本博弈論(四大博弈+拓展nim)
4.
博弈論——非完全信息擴展式博弈
5.
博弈--尼姆博弈
6.
博弈論-Bash博弈
7.
博弈論模型總結
8.
經典博弈模型
9.
博弈論學習之巴什博弈,尼姆博弈, sg博弈
10.
博弈論模版(Bash博弈,Nim博弈,威佐夫博弈,SG打表)
>>更多相關文章<<