LCT是樹鏈剖分中的一種,又叫實鏈剖分、動態樹,經常使用於維護動態的樹、森林。php
LCT並不直接維護原樹,而是用一堆splay做爲輔助樹來維護。原樹中的一條實鏈上的點在一棵splay中,虛邊體現爲輔助上的鏈接兩棵splay的虛邊,只認爸爸不認兒子。c++
1 int n,m; 2 struct Node { 3 int fa,son[2]; //爸爸、兒子(0左1右) 4 int val,all; //該點權值、子樹異或和 5 char ifz; //是否翻轉(0否1是) 6 void res() { //重置(然並卵) 7 fa=son[0]=son[1]=val=0; 8 } 9 } tree[maxn]; 10 int pre[maxn],inp; //翻轉序列(splay用)
很少說了git
1 char which(int x) { 2 return x==tree[tree[x].fa].son[1]; 3 }
也很少說了ide
1 char isroot(int x) { 2 return x!=tree[tree[x].fa].son[which(x)]; 3 }
1 void rotate(int x) { 2 int f=tree[x].fa,ff=tree[f].fa,c=which(x); 3 if(!isroot(f)) tree[ff].son[which(f)]=x; //若它爸是根就不要搞它爺了 4 tree[x].fa=ff; 5 tree[f].son[c]=tree[x].son[c^1]; 6 tree[tree[f].son[c]].fa=f; 7 tree[x].son[c^1]=f; 8 tree[f].fa=x; 9 update(f); 10 update(x); 11 } 12 void splay(int x) { 13 int f; 14 pre[inp=1]=x; 15 for(f=x; !isroot(f); f=tree[f].fa) pre[++inp]=tree[f].fa; //挖出它到根的點 16 fdi(i,inp,1,1) pushdown(pre[i]); //所有pushdown 17 for(; !isroot(x); rotate(x))if(!isroot(tree[x].fa))rotate((which(tree[x].fa)^which(x))?x:tree[x].fa); //無需pushdown 18 }
這個是重點!!!是LCT的核心!!!ui
首先,先將該節點splay到根,並將其爸爸splay到根。因而咱們知道,它爸爸的右兒子深度大於它爸爸,是須要砍成虛邊的點,而它的深度也大於它爸爸,因此直接將它爸爸的右兒子變成它。重複上述操做,直到它無爸爸。spa
1 void access(int x) { 2 for(int pr=0; x; pr=x,x=tree[x].fa)splay(x),tree[x].son[1]=pr,update(x); 3 }
先打通這個點到根,並將它splay到根。而後咱們能夠發現,不在這棵splay上的點不受影響,而這棵splay上的點深淺顛倒,對應到splay上就是區間翻轉。因此給它打上一個翻轉標記。3d
1 void makeroot(int x) { 2 access(x); 3 splay(x); 4 tree[x].ifz^=1; //打翻轉標記 5 }
先打通它到根並splay,而後找到它所在splay的最左邊的點(即一直往左兒子找)。code
1 int find(int x) { 2 for(access(x),splay(x); tree[x].son[0]; x=tree[x].son[0]); 3 return x; 4 }
將一個點變成根,並令這個點爸爸爲另外一個點。注意先判斷這兩個點在不在一棵樹內,在就不用連了。blog
1 void link(int x,int y) { 2 makeroot(x); 3 tree[x].fa=y; 4 }
先判斷在不在一棵樹內,不在就不切。而後將一個點變成根,另外一個點打通到根並splay到根。易發現若這兩個點間有邊則這棵splay中只有它們倆。判斷一下便可。get
1 void cut(int x,int y) { 2 makeroot(x); 3 access(y); 4 splay(y); 5 if(tree[y].son[0]==x&&!tree[y].son[1]&&!tree[x].son[0]&&!tree[x].son[1])tree[y].son[0]=tree[x].fa=0; 6 }
將這個點變成根,並將其splay,再改變權值便可。
1 void change(int x,int y) { 2 makeroot(x); 3 splay(x); 4 tree[x].val=y; 5 update(x); 6 }
將x變成根,打通y並splay,直接查詢便可。
1 int query(int x,int y) { 2 makeroot(x); 3 access(y); 4 splay(y); 5 return tree[y].all; 6 }
splay:均攤O(logn)的不用說了吧
access:因爲每次access最多有logn條實邊變成虛邊,splay複雜度也僅爲均攤O(logn),所以時間複雜度均攤O(logn)
makeroot:makeroot的開銷主要爲access,所以也爲均攤O(logn)
其餘:基於以上三種操做,所以都爲均攤O(logn)
只是常數無比巨大!!!
只是常數無比巨大!!!
只是常數無比巨大!!!
顯然是O(n)的
洛谷P3690 【模板】Link Cut Tree (動態樹)
1 #include<bits/stdc++.h> 2 using namespace std; 3 #define ImaxnF 0x7fffffff 4 #define ME 0x7f 5 #define FO(s) freopen(s".in","r",stdin);freopen(s".out","w",stdout) 6 #define fui(i,a,b,c) for(int i=(a);i<=(b);i+=(c)) 7 #define fdi(i,a,b,c) for(int i=(a);i>=(b);i-=(c)) 8 #define fel(i,a) for(register int i=h[a];i;i=ne[i]) 9 #define ll long long 10 #define MEM(a,b) memset(a,b,sizeof(a)) 11 #define maxn (300000+10) 12 int n,m; 13 struct Node{ 14 int fa,son[2]; 15 int val,all;//,siz; 16 char ifz; 17 void res(){fa=son[0]=son[1]=val=/*siz=*/0;} 18 }tree[maxn]; 19 int pre[maxn],inp; 20 template<class T> 21 inline T read(T &n){ 22 n=0;int t=1;char ch; 23 for(ch=getchar();!isdigit(ch)&&ch!='-';ch=getchar());(ch=='-')?t=-1:n=ch-'0'; 24 for(ch=getchar();isdigit(ch);ch=getchar()) n=n*10+ch-'0'; 25 return (n*=t); 26 } 27 template<class T> 28 T write(T n){ 29 if(n<0) putchar('-'),n=-n; 30 if(n>=10) write(n/10);putchar(n%10+'0'); 31 } 32 template<class T> 33 T writeln(T n){ 34 write(n);putchar('\n'); 35 } 36 char which(int x){return x==tree[tree[x].fa].son[1];} 37 char isroot(int x){return x!=tree[tree[x].fa].son[which(x)];} 38 void update(int x){tree[x].all=tree[tree[x].son[0]].all^tree[tree[x].son[1]].all^tree[x].val;} 39 void pushdown(int x){ 40 if(tree[x].ifz){ 41 tree[x].ifz=0,swap(tree[x].son[0],tree[x].son[1]); 42 tree[tree[x].son[0]].ifz^=1,tree[tree[x].son[1]].ifz^=1; 43 } 44 }void rotate(int x){ 45 int f=tree[x].fa,ff=tree[f].fa,c=which(x);if(!isroot(f)) tree[ff].son[which(f)]=x; 46 tree[x].fa=ff;tree[f].son[c]=tree[x].son[c^1];tree[tree[f].son[c]].fa=f; 47 tree[x].son[c^1]=f;tree[f].fa=x;update(f);update(x); 48 }void splay(int x){ 49 int f;pre[inp=1]=x;for(f=x;!isroot(f);f=tree[f].fa) pre[++inp]=tree[f].fa;fdi(i,inp,1,1) pushdown(pre[i]); 50 for(;!isroot(x);rotate(x))if(!isroot(tree[x].fa))rotate((which(tree[x].fa)^which(x))?x:tree[x].fa);//update(x); 51 }void access(int x){for(int pr=0;x;pr=x,x=tree[x].fa)splay(x),tree[x].son[1]=pr,update(x);} 52 void makeroot(int x){access(x);splay(x);tree[x].ifz^=1;} 53 int find(int x){for(access(x),splay(x);tree[x].son[0];x=tree[x].son[0]);return x;} 54 void cut(int x,int y){makeroot(x);access(y);splay(y);if(tree[y].son[0]==x&&!tree[y].son[1]&&!tree[x].son[0]&&!tree[x].son[1]/*tree[y].siz==2*/)tree[y].son[0]=tree[x].fa=0;} 55 void link(int x,int y){makeroot(x);tree[x].fa=y;} 56 void change(int x,int y){makeroot(x);splay(x);tree[x].val=y;update(x);} 57 int query(int x,int y){makeroot(x);access(y);splay(y);return tree[y].all;} 58 int main(){ 59 read(n);read(m); 60 fui(i,1,n,1) tree[i].val=read(tree[i].all); 61 fui(i,1,m,1){ 62 int opt,x,y; 63 read(opt);read(x);read(y); 64 switch(opt){ 65 case 0:writeln(query(x,y));break; 66 case 1:if(find(x)!=find(y)) link(x,y);break; 67 case 2:if(find(x)==find(y)) cut(x,y);break; 68 case 3:change(x,y); 69 } 70 } 71 return 0; 72 }
1 #include<bits/stdc++.h> 2 using namespace std; 3 #define ImaxnF 0x7fffffff 4 #define ME 0x7f 5 #define FO(s) freopen(s".in","r",stdin);freopen(s".out","w",stdout) 6 #define fui(i,a,b,c) for(int i=(a);i<=(b);i+=(c)) 7 #define fdi(i,a,b,c) for(int i=(a);i>=(b);i-=(c)) 8 #define fel(i,a) for(register int i=h[a];i;i=ne[i]) 9 #define ll long long 10 #define MEM(a,b) memset(a,b,sizeof(a)) 11 #define maxn (10000+10) 12 int n,m; 13 struct Node{ 14 int fa,son[2]; 15 char ifz; 16 }tree[maxn]; 17 int pre[maxn],inp; 18 template<class T> 19 inline T read(T &n){ 20 n=0;int t=1;double x=10;char ch; 21 for(ch=getchar();!isdigit(ch)&&ch!='-';ch=getchar());(ch=='-')?t=-1:n=ch-'0'; 22 for(ch=getchar();isdigit(ch);ch=getchar()) n=n*10+ch-'0'; 23 if(ch=='.') for(ch=getchar();isdigit(ch);ch=getchar()) n+=(ch-'0')/x,x*=10; 24 return (n*=t); 25 } 26 char which(int x){return x==tree[tree[x].fa].son[1];} 27 char isroot(int x){return x!=tree[tree[x].fa].son[which(x)];} 28 void pushdown(int x){ 29 if(tree[x].ifz){ 30 tree[x].ifz=0,swap(tree[x].son[0],tree[x].son[1]); 31 tree[tree[x].son[0]].ifz^=1,tree[tree[x].son[1]].ifz^=1; 32 } 33 } 34 void rotate(int x){ 35 int f=tree[x].fa,ff=tree[f].fa,c=which(x);if(!isroot(f)) tree[ff].son[which(f)]=x; 36 tree[x].fa=ff;tree[f].son[c]=tree[x].son[c^1];tree[tree[f].son[c]].fa=f; 37 tree[x].son[c^1]=f;tree[f].fa=x; 38 } 39 void splay(int x){ 40 int f;pre[inp=1]=x;for(f=x;!isroot(f);f=tree[f].fa) pre[++inp]=tree[f].fa;fdi(i,inp,1,1) pushdown(pre[i]); 41 for(;!isroot(x);rotate(x))if(!isroot(tree[x].fa))rotate((which(tree[x].fa)^which(x))?x:tree[x].fa); 42 } 43 void access(int x){for(int pr=0;x;pr=x,x=tree[x].fa)splay(x),tree[x].son[1]=pr;} 44 void makeroot(int x){access(x);splay(x);tree[x].ifz^=1;} 45 int find(int x){for(access(x),splay(x);tree[x].son[0];x=tree[x].son[0]);return x;} 46 void cut(int x,int y){makeroot(x);access(y);splay(y);if(tree[y].son[0]==x&&!tree[y].son[1]&&!tree[x].son[0]&&!tree[x].son[1])tree[y].son[0]=tree[x].fa=0;} 47 void link(int x,int y){makeroot(x);tree[x].fa=y;} 48 int main(){ 49 read(n);read(m); 50 fui(i,1,m,1){ 51 int x,y;char opt; 52 for(opt=getchar();opt!='Q'&&opt!='C'&&opt!='D';opt=getchar());read(x);read(y); 53 switch(opt){ 54 case 'Q':puts((find(x)==find(y))?"Yes":"No");break; 55 case 'C':if(find(x)!=find(y)) link(x,y);break; 56 case 'D':cut(x,y);break; 57 } 58 } 59 return 0; 60 }