filebeat+kafka+Flink+ElasticSearch+springboot+高德地圖熱力圖項目

 

因爲近期在研究ELK和最新的實時計算框架Flink,因此把之前熱力圖項目flume+kafka+SparkStreaming+mysql+ssm+高德地圖熱力圖項目換組件重構一下。效果不會變好,可能更麻煩,性能更低,純屬應用一下最近研究的新組件和新計算框架。css

項目環境:

filebeat 6.2.0
kafka 0.8.2
Flink 1.6.1
ElasticSearch 6.4.0
springboot 2.1.5
scala 2.11html

項目順序:

1.python寫個腳本模擬下數據。正常狀況的真實數據是,咱們每一個人的手機會不停發送你的經緯度,好比你坐火車到別的省份會收到一條短信,例如:山東省濟南市歡迎您。就是這個道理。

import random
import time

phone = [
    "13869555210",
    "18542360152",
    "15422556663",
    "18852487210",
    "13993584664",
    "18754366522",
    "15222436542",
    "13369568452",
    "13893556666",
    "15366698558"
]

location = [
    "123.449169, 41.740567",
    "123.450169, 41.740705",
    "123.451169, 41.741405",
    "123.452169, 41.741805",
    "123.453654, 41.742405",
    "123.454654, 41.742805",
    "123.455654, 41.743405",
    "123.458654, 41.743705"
]


def sample_phone():
    return random.sample(phone, 1)[0]


def sample_location():
    return random.sample(location, 1)[0]


def generator_log(count=10):
    time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
    f = open("/var/log/lyh.log", "a+")
    while count >= 1:
        query_log = "{phone}\t{location}\t{date}".format(phone=sample_phone(), location=sample_location(),
                                                         date=time_str)
        f.write(query_log + "\n")
        #   print query_log
        count = count - 1


if __name__ == '__main__':
    while True:
        generator_log(100)
        time.sleep(5)

把代碼上傳到linux環境運行,腳本功能向/var/log/lyh.log文件內 每隔5秒隨即生成100條數據。內容就是電話號碼+經緯度+時間,後期用Flink實時處理時候須要拿到經緯度信息。java

2.用filebeat組件抓取/var/log/lyh.log文件中不停增長的數據,而後輸出到kafka中

filebeat是ELK日誌收集系統體系裏抓取日誌的插件,咱們這裏爲了應用一下用他來抓取咱們上面Python腳本生成的數據。
修改filebeat.yml配置文件,配置監控抓取信息的文件,和輸出的位置python

filebeat.prospectors:
- type: log      #抓取信息後以log格式json字符串輸出
  paths:
    - /var/log/lyh.log    #監控抓取數據的文件

filebeat.config.modules:
  path: ${path.config}/modules.d/*.yml
  reload.enabled: false
#若是不適用logstash對日誌進行過濾,也能夠直接輸出到es
#output.elasticsearch:
#  hosts: ["172.24.112.17:9200"]
#  #輸出到kafka
output.kafka:
  hosts: ["hadoop1:9092", "hadoop2:9092", "hadoop3:9092"]
  topic: 'log'

注意:filebeat和kafka的版本必定要兼容否者報錯,具體哪一個版本之間互相兼容參考官方文檔https://www.elastic.co/guide/en/beats/filebeat/6.4/kafka-output.html
啓動filebeat命令mysql

sudo -u elk ./filebeat -e -c filebeat.yml -d "publish"

3.編寫Flink代碼。從kafka消費數據,清洗數據拿到本身要的數據,存入到ElasticSearch中

pom依賴:jquery

<dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.11</version>
      <scope>test</scope>
    </dependency>
    <dependency>
      <groupId>org.scala-lang</groupId>
      <artifactId>scala-library</artifactId>
      <version>2.11.8</version>
    </dependency>

    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-core</artifactId>
      <version>1.6.1</version>
    </dependency>

    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-clients_2.11</artifactId>
      <version>1.6.1</version>
    </dependency>

    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-scala_2.11</artifactId>
      <version>1.6.1</version>
    </dependency>

    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-streaming-scala_2.11</artifactId>
      <version>1.6.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka-0.8 -->
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-connector-kafka-0.8_2.11</artifactId>
      <version>1.6.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/log4j/log4j -->
    <dependency>
      <groupId>log4j</groupId>
      <artifactId>log4j</artifactId>
      <version>1.2.17</version>
    </dependency>
    <dependency>
      <groupId>com.alibaba</groupId>
      <artifactId>fastjson</artifactId>
      <version>1.2.36</version>
    </dependency>

    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-connector-elasticsearch6_2.11</artifactId>
      <version>1.6.1</version>
    </dependency>

  </dependencies>

Flink代碼:linux

import java.text.SimpleDateFormat
import java.util.{Date, Properties}

import com.alibaba.fastjson.JSON
import org.apache.flink.streaming.connectors.kafka._
import org.apache.flink.streaming.util.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.scala._
import org.apache.flink.api.common.functions.RuntimeContext
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction
import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer
import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink
import org.apache.http.HttpHost
import org.elasticsearch.action.index.IndexRequest
import org.elasticsearch.client.Requests


object Flink_kafka {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    // 很是關鍵,必定要設置啓動檢查點!!
    env.enableCheckpointing(5000)

    //配置kafka信息
    val props = new Properties()
    props.setProperty("bootstrap.servers", "192.168.199.128:9092,192.168.199.131:9092,192.168.199.132:9092")
    props.setProperty("zookeeper.connect", "192.168.199.128:2181,192.168.199.131:2181,192.168.199.132:2181")
    props.setProperty("group.id", "test")
    //讀取數據,第一個參數是kafka的topic,也就是上面filebeat配置文件裏面設定的topic叫log
    val consumer = new FlinkKafkaConsumer08[String]("log", new SimpleStringSchema(), props)
    //設置只讀取最新數據
    consumer.setStartFromLatest()
    //添加kafka爲數據源
    //18542360152   116.410588, 39.880172   2019-05-24 23:43:38
    val stream = env.addSource(consumer).map(
      x=>{
        JSON.parseObject(x)
      }
    ).map(x=>{
      x.getString("message")
    }).map(x=>{
      val jingwei=x.split("\\t")(1)
      val wei=jingwei.split(",")(0).trim
      val jing=jingwei.split(",")(1).trim
      //調一下時間格式,es裏面存儲時間默認是UTC格式日期,+0800是設置成北京時區
      val sdf=new SimpleDateFormat("yyyy-MM-dd\'T\'HH:mm:ss.SSS+0800")
      val time=sdf.format(new Date())
      val resultStr=wei+","+jing+","+time
      resultStr
    })

    stream.print() //數據清洗之後是這種樣子 123.450169,41.740705,2019-05-26T19:03:59.281+0800
    //把清洗好的數據存入es中,數據入庫
    val httpHosts = new java.util.ArrayList[HttpHost]
    httpHosts.add(new HttpHost("192.168.199.128", 9200, "http"))//es的client經過http請求鏈接到es進行增刪改查操做

    val esSinkBuilder = new ElasticsearchSink.Builder[String](
      httpHosts,
      new ElasticsearchSinkFunction[String]{    //參數element就是上面清洗好的數據格式
        def createIndexRequest(element: String):IndexRequest={
          val json = new java.util.HashMap[String, String]
          json.put("wei", element.split(",")(0))
          json.put("jing", element.split(",")(1))
          json.put("time", element.split(",")(2))

          return Requests.indexRequest()
            .index("location-index")
              .`type`("location")
            .source(json)
        }

        override def process(element: String, runtimeContext: RuntimeContext, requestIndexer: RequestIndexer): Unit = {
          requestIndexer.add(createIndexRequest(element))
        }
      }
    )

    //批量請求的配置;這將指示接收器在每一個元素以後發出請求,不然將對它們進行緩衝。
    esSinkBuilder.setBulkFlushMaxActions(1)

    stream.addSink(esSinkBuilder.build())

    env.execute("Kafka_Flink")
  }
}

注意:ES存儲時間時候的格式和時區問題
elasticsearch原生支持date類型,json格式經過字符來表示date類型。
因此在用json提交日期至elasticsearch的時候,es會隱式轉換,把es認爲是date類型的字符串直接轉爲date類型。web

date類型是包含時區信息的,若是咱們沒有在json表明日期的字符串中顯式指定時區,對es來講沒什麼問題,
可是若是經過kibana顯示es裏的數據時,就會出現問題,數據的時間會晚8個小時。ajax

kibana在經過瀏覽器展現的時候,會經過js獲取當前客戶端機器所在的時區,也就是東八區,因此kibana會把從es獲得的日期數據減去8小時。
最佳實踐方案就是:往es提交日期數據時,直接提交帶有時區信息的日期字符串,
如:「2016-07-15T12:58:17.136+0800」。 這個是世界協調時間(UTC)格式-es默認支持的格式
java格式化:spring

String FULL_FORMAT="yyyy-MM-dd\'T\'HH:mm:ss.SSS+0800";
Date now=new Date();
new SimpleDateFormat(FULL_FORMAT).format(now)

4.目前數據已經入庫,用springboot建立一個web項目,從es裏查出數據,在前臺高德熱力圖組件裏動態展現

整個web項目的pom依賴:

<dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-tomcat</artifactId>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <!--JavaServer Pages Standard Tag Library,JSP標準標籤庫-->
        <dependency>
            <groupId>javax.servlet</groupId>
            <artifactId>jstl</artifactId>
        </dependency>

        <!--內置tocat對Jsp支持的依賴,用於編譯Jsp-->
        <dependency>
            <groupId>org.apache.tomcat.embed</groupId>
            <artifactId>tomcat-embed-jasper</artifactId>
            <!--<scope>provided</scope>-->
        </dependency>

        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-high-level-client</artifactId>
            <version>6.4.3</version>
        </dependency>

        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>2.11.1</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.36</version>
        </dependency>
    </dependencies>

4.1咱們要從es中查出距離當前時間20秒之內的全部數據,而且按經緯度聚合統計數量。
es的查詢語句:

 

QQ截圖20190526193643.png

 

使用聚合查詢以前要先設置一下mapping,把jing和wei的屬性fielddata設置成true,默認是false。不改爲true進行聚會查詢會報錯。
上面語句是先查出距離當前時間20秒內的全部數據,而後根據jing和wei數據進行聚合也就是sql裏的group by,聚會之後統計總數。意思就是當前經緯度內的總人數,數越大表明該區域人越多。
web代碼裏面咱們要把上述查詢語句經過es的api換成java代碼實現。

先建立一個Location實體類,來存放查詢出來的數據,總數,經度,緯度。

public class Location {
    private Integer count;
    private double wei;
    private double jing;

    public Integer getCount() {
        return count;
    }

    public void setCount(Integer count) {
        this.count = count;
    }

    public double getWei() {
        return wei;
    }

    public void setWei(double wei) {
        this.wei = wei;
    }

    public double getJing() {
        return jing;
    }

    public void setJing(double jing) {
        this.jing = jing;
    }
}

寫一個es的工具類,建立和es鏈接的client,一些基本增刪改查方法,以及上面查詢語句的java代碼實現

import com.test.flink_web_show.controller.Location;
import org.apache.http.HttpHost;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.script.ScriptType;
import org.elasticsearch.script.mustache.SearchTemplateRequest;
import org.elasticsearch.script.mustache.SearchTemplateResponse;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.aggregations.Aggregation;
import org.elasticsearch.search.aggregations.Aggregations;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

public class RestClientUtils {

    private RestHighLevelClient client = null;

    public RestClientUtils() {
        if (client == null){
            synchronized (RestHighLevelClient.class){
                if (client == null){
                    client = getClient();
                }
            }
        }
    }

    private RestHighLevelClient getClient(){
        RestHighLevelClient client = new RestHighLevelClient(
                RestClient.builder(
                        new HttpHost("192.168.199.128", 9200, "http"),
                        new HttpHost("192.168.199.128", 9201, "http")));

        return client;
    }

    public void closeClient(){
        try {
            if (client != null){
                client.close();
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    
    /*------------------------------------------------ search Api 多條件查詢 start ----------------------------------------------*/
    /**
     * 查詢模板
     * @throws Exception
     */
    public List<Location> searchTemplate(String indexName, String JsonStr, Map<String, Object> scriptParams) throws Exception{
        //Inline Templates
        SearchTemplateRequest request = new SearchTemplateRequest();
        request.setRequest(new SearchRequest(indexName));
        request.setScriptType(ScriptType.INLINE);
        request.setScript(JsonStr);

        request.setScriptParams(scriptParams);

        //Synchronous Execution
        SearchTemplateResponse response = client.searchTemplate(request, RequestOptions.DEFAULT);

        //SearchTemplate Response
        SearchResponse searchResponse = response.getResponse();
        //Retrieving SearchHits 獲取結果數據
        SearchHits hits = searchResponse.getHits();
        long totalHits = hits.getTotalHits();
        float maxScore = hits.getMaxScore();
        System.out.println("totalHits: " + totalHits);
        System.out.println("maxScore: " + maxScore);
        System.out.println("------------------------------------------");
        SearchHit[] searchHits = hits.getHits();
        /*for (SearchHit hit : searchHits) {
            // do something with the SearchHit
            String index = hit.getIndex();
            String type = hit.getType();
            String id = hit.getId();
            float score = hit.getScore();

            String sourceAsString = hit.getSourceAsString();
            System.out.println("index: " + index);
            System.out.println("type: " + type);
            System.out.println("id: " + id);
            System.out.println("score: " + score);
            System.out.println(sourceAsString);
            System.out.println("------------------------------------------");
        }*/
        //獲得aggregations下內容
        ArrayList<Location> locations = new ArrayList<>();
        Aggregations aggregations = searchResponse.getAggregations();
        if(aggregations!=null){
            Map<String, Aggregation> aggregationMap = aggregations.getAsMap();
            Terms companyAggregation = (Terms) aggregationMap.get("group_by_jing");
            List<? extends Terms.Bucket> buckets = companyAggregation.getBuckets();
            for(Terms.Bucket bk:buckets){
                Location location = new Location();
                Object key = bk.getKey();
                long docCount = bk.getDocCount();
                System.out.println("key: "+key.toString());
                System.out.println("doc_count: "+docCount);
                String jingdu = key.toString().split("#split#")[0];
                String substring_jing = jingdu.substring(1, jingdu.length() - 1);
                location.setJing(Double.parseDouble(substring_jing));
                String weidu = key.toString().split("#split#")[1];
                String substring_wei = weidu.substring(1, weidu.length() - 1);
                location.setWei(Double.parseDouble(substring_wei));
                location.setCount((int)docCount);

                locations.add(location);
            }
        }
        return locations;
    }
}

es的java api比較複雜具體參考個人另外一篇簡書ElasticSearch java API

Controller代碼:

import com.alibaba.fastjson.JSON;
import com.test.flink_web_show.es_utils.RestClientUtils;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.servlet.ModelAndView;

import javax.servlet.http.HttpServletResponse;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

@Controller
public class HomeController {

    @RequestMapping("/")
    public ModelAndView home()
    {
        ModelAndView modelAndView = new ModelAndView();

        modelAndView.setViewName("index");
        return modelAndView;
    }
    @RequestMapping("/get_map")
    public void getMap(HttpServletResponse response) throws Exception{
        RestClientUtils restClientUtils = new RestClientUtils();
        String searchJSON="{\n" +
                "  \"query\": {\n" +
                "    \"bool\": {\n" +
                "      \"filter\": {\n" +
                "        \"range\": {\n" +
                "          \"{{time}}\": {\n" +
                "            \"{{gte}}\": \"{{value1}}\", \n" +
                "            \"{{lt}}\": \"{{now}}\"\n" +
                "          }\n" +
                "        }\n" +
                "      }\n" +
                "    }\n" +
                "  },\n" +
                "  \"aggs\": {\n" +
                "    \"{{group_by_jing}}\": {\n" +
                "      \"terms\": {\n" +
                "        \"script\": \"{{doc['jing'].values +'#split#'+ doc['wei'].values}}\"\n" +
                "      }\n" +
                "    }\n" +
                "  }\n" +
                "}";
        Map<String, Object> map = new HashMap<>();
        map.put("time","time");
        map.put("gte","gte");
        map.put("value1","now-20s");
        map.put("lt","lt");
        map.put("now","now");
        map.put("group_by_jing","group_by_jing");
        map.put("doc['jing'].values +'#split#'+ doc['wei'].values","doc['jing'].values +'#split#'+ doc['wei'].values");

        List<Location> locations = restClientUtils.searchTemplate("location-index", searchJSON, map);
        restClientUtils.closeClient();
        String json = JSON.toJSONString(locations);
        response.getWriter().print(json);
    }
}

前臺jsp代碼:

<%--
  Created by IntelliJ IDEA.
  User: ttc
  Date: 2018/7/6
  Time: 14:06
  To change this template use File | Settings | File Templates.
--%>
<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8"/>
    <title>高德地圖</title>
    <link rel="stylesheet" href="http://cache.amap.com/lbs/static/main1119.css"/>
</head>
<body>
<script src="https://cdn.bootcss.com/echarts/4.1.0.rc2/echarts.min.js"></script>
<script src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
<script src="http://webapi.amap.com/maps?v=1.4.9&amp;key=d16808eab90b7545923a1c2f4bb659ef"></script>
<div id="container"></div>

<script>
    //定義地圖第一次打開的中心位置
    var map = new AMap.Map("container", {
        resizeEnable: true,
        center: [123.453169, 41.742567],   //中心點的經緯度
        zoom: 17                        //初始地圖的縮放度
    });

    var heatmap;
    map.plugin(["AMap.Heatmap"],function() {      //加載熱力圖插件
        heatmap = new AMap.Heatmap(map,{
            raduis:50,
            opacity:[0,0.7]
        });    //在地圖對象疊加熱力圖
        //具體參數見接口文檔
    });
    //定時函數每1秒就發送一個ajax請求,去es裏面查詢數據賦值給points對象,從而更新heatmap對象來給熱力圖添加數據
    setInterval(function (args) {
        var points =(function a(){  //<![CDATA[
            var city=[];
            $.ajax({
                type:"POST",
                url:"/get_map",
                dataType:'json',
                async:false,        //
                success:function(result){
                    for(var i=0;i<result.length;i++){
                        //alert("調用了");
                        city.push({"lng":result[i].wei,"lat":result[i].jing,"count":result[i].count});
                    }

                }
            });
            return city;
        })();//]]>
        heatmap.setDataSet({data:points,max:70}); //設置熱力圖數據集
    },1000)
    // var map = new AMap.Map('container', {
    //    pitch:75, // 地圖俯仰角度,有效範圍 0 度- 83 度
    //    viewMode:'3D' // 地圖模式
    //});
</script>

</body>
</html>

上述爲所有代碼部分
按順序啓動項目所有流程
啓動zookeeper

zkServer.sh start

啓動kafka

bin/kafka-server-start.sh config/server.properties

啓動es

sudo -u elk bin/elasticsearch

啓動filebeat

sudo -u elk ./filebeat -e -c filebeat.yml -d "publish"

啓動Python腳本生成模擬數據

python phoneData_every5second.py

啓動Flink項目,實時接收並處理數據存入到es
啓動web項目完成動態地圖展現

 

做者:__元昊__ 連接:https://www.jianshu.com/p/c148bf91c3ac 來源:簡書 簡書著做權歸做者全部,任何形式的轉載都請聯繫做者得到受權並註明出處。

相關文章
相關標籤/搜索