JavaShuo
欄目
標籤
Training with Quantization Noise for Extreme Model Compression
時間 2020-12-23
原文
原文鏈接
https://arxiv.org/pdf/2004.07320.pdf 論文的核心思想如下: 針對上圖進行實例分析: 如對卷積層weight爲(64,64,3,3)進行量化 設置centroids數目如(32,9)其中9表示3*3卷積核的flatten 通過k-means進行選取centroids 之後進行編碼(codebook),生成三個矩陣: centroids=(32,9) assignm
>>阅读原文<<
相關文章
1.
Training with Quantization Noise for Extreme Model Compression
2.
神經網絡參數量化,模型壓縮論文筆記Training with Quantization Noise for Extreme Model Compression
3.
Model Compression and Acceleration Overview
4.
Deep Compression : Compressing Deep Neual Networks With Pruning, Trained Quantization And Huffman Co
5.
2018-22Deep Compression: Compression Deep Neural Networks With Pruning, Trained Quantization And...
6.
論文閱讀《A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising》CVPR2020
7.
【論文閱讀筆記】Deep Neural Network Compression with Single and Multiple Level Quantization
8.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
9.
Compression Deep Neural Networks With Pruning, Trained Quantization And Huffman Coding
10.
【2】Model Compression As Constrained Optimization, with Application to Neural Nets. 2017
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
•
算法總結-股票買賣
相關標籤/搜索
compression
extreme
quantization
noise
training
model
flink training
noise+salt
with+this
with...connect
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸載與安裝
2.
Unity NavMeshComponents 學習小結
3.
Unity技術分享連載(64)|Shader Variant Collection|Material.SetPassFast
4.
爲什麼那麼多人用「ji32k7au4a83」作密碼?
5.
關於Vigenere爆0總結
6.
圖論算法之最小生成樹(Krim、Kruskal)
7.
最小生成樹 簡單入門
8.
POJ 3165 Traveling Trio 筆記
9.
你的快遞最遠去到哪裏呢
10.
雲徙探險中臺賽道:借道雲原生,尋找「最優路線」
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Training with Quantization Noise for Extreme Model Compression
2.
神經網絡參數量化,模型壓縮論文筆記Training with Quantization Noise for Extreme Model Compression
3.
Model Compression and Acceleration Overview
4.
Deep Compression : Compressing Deep Neual Networks With Pruning, Trained Quantization And Huffman Co
5.
2018-22Deep Compression: Compression Deep Neural Networks With Pruning, Trained Quantization And...
6.
論文閱讀《A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising》CVPR2020
7.
【論文閱讀筆記】Deep Neural Network Compression with Single and Multiple Level Quantization
8.
【Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huff】論文筆記
9.
Compression Deep Neural Networks With Pruning, Trained Quantization And Huffman Coding
10.
【2】Model Compression As Constrained Optimization, with Application to Neural Nets. 2017
>>更多相關文章<<