機器學習中K-means聚類算法原理及C語言實現

本人之前主要focus在傳統音頻的軟件開發,接觸到的算法主要是音頻信號處理相關的,如各類編解碼算法和回聲消除算法等。最近切到語音識別上,接觸到的算法就變成了各類機器學習算法,如GMM等。K-means做爲其中比較簡單的一種確定是要好好掌握的。今天就講講K-means的基本原理和代碼實現。其中基本原理簡述(主要是由於:1,K-means比較簡單;2,網上有不少講K-means基本原理的),重點放在代碼實現上。算法

 

1, K-means基本原理app

K均值(K-means)聚類算法是無監督聚類(聚類(clustering)是將數據集中的樣本劃分爲若干個一般是不相交的子集,每一個子集稱爲一個「簇(cluster)」)算法中的一種,也是最經常使用的聚類算法。K表示類別數,Means表示均值。K-means主要思想是在給定K值和若干樣本(點)的狀況下,把每一個樣本(點)分到離其最近的類簇中心點所表明的類簇中,全部點分配完畢以後,根據一個類簇內的全部點從新計算該類簇的中心點(取平均值),而後再迭代的進行分配點和更新類簇中心點的步驟,直至類簇中心點的變化很小,或者達到指定的迭代次數。dom

 

 K-means算法流程以下:

(a)隨機選取K個初始cluster center

(b)分別計算全部樣本到這K個cluster center的距離

(c)若是樣本離cluster center Ci最近,那麼這個樣本屬於Ci點簇;若是到多個cluster center的距離相等,則可劃分到任意簇中

(d)按距離對全部樣本分完簇以後,計算每一個簇的均值(最簡單的方法就是求樣本每一個維度的平均值),做爲新的cluster center

(e)重複(b)(c)(d)直到新的cluster center和上輪cluster center變化很小或者達到指定的迭代次數,算法結束機器學習

 

2, 算法實現學習

我主要偏底層開發,最熟悉語言是C,因此代碼是用C語言來實現的。在二維平面上有一些點,大意以下圖,3d

用K-means算法對其分類,其中類的個數(即K值)和點的個數人爲指定。具體的代碼以下:blog

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>

#define MAX_ROUNDS 100    //最大容許的聚類次數

//「點」的結構體  
typedef struct Point{
  int x_value;           //用於存放點在X軸上的值
  int y_value;           //用於存放點在Y軸上的值
  int cluster_id;        //用於存放該點所屬的cluster id
}Point;
Point* data;
 
//cluster center的結構體
typedef struct ClusterCenter{
  double x_value;
  double y_value;
  int cluster_id;
}ClusterCenter;
ClusterCenter* cluster_center;

//計算cluster center的結構體
typedef struct CenterCalc{
  double x_value;
  double y_value;
}CenterCalc;
CenterCalc *center_calc;
 
int is_continue;                               //kmeans 運算是否繼續
int* cluster_center_init_index;        //記錄每一個cluster center最初用的是哪一個「點」
double* distance_from_center;      //記錄一個「點」到全部cluster center的距離
int* data_size_per_cluster;            //每一個cluster點的個數
int data_size_total;                        //設定點的個數
char filename[200];                       //要讀取的點的數據的文件名
int cluster_count;                          //設定的cluster的個數
 
void memoryAlloc();
void memoryFree();
void readDataFromFile();
void initialCluster();
void calcDistance2OneCenter(int pointID, int centerID);
void calcDistance2AllCenters(int pointID);
void partition4OnePoint(int pointID);
void partition4AllPointOneCluster();
void calcClusterCenter();
void kmeans();
void compareNewOldClusterCenter(CenterCalc* center_calc);
 
int main(int argc, char* argv[])
{
    if( argc != 4 )
    {
        printf("This application needs 3 parameters to run:"
            "\n the 1st is the size of data set,"
            "\n the 2nd is the file name that contains data"
            "\n the 3rd indicates the cluster_count"
            "\n");
        exit(1);
    }

    data_size_total = atoi(argv[1]);
    strcat(filename, argv[2]);
    cluster_count = atoi(argv[3]);
    //1, memory alloc
    memoryAlloc();
    //2, read point data from file
    readDataFromFile();
    //3, initial cluster
    initialCluster();
    //4, run k-means
    kmeans();
    //5, memory free & end
    memoryFree();
    
    return 0;
}

void memoryAlloc()
{
  data = (Point*)malloc(sizeof(struct Point) * (data_size_total));
  if( !data )
  {
    printf("malloc error:data!");
    exit(1);
  }
  cluster_center_init_index = (int*)malloc(sizeof(int) * (cluster_count));
  if( !cluster_center_init_index )
  {
    printf("malloc error:cluster_center!\n");
    exit(1);
  }
  distance_from_center = (double*)malloc(sizeof(double) * (cluster_count));
  if( !distance_from_center )
  {
    printf("malloc error: distance_from_center!\n");
    exit(1);
  }
  cluster_center = (ClusterCenter*)malloc(sizeof(struct ClusterCenter) * (cluster_count));
  if( !cluster_center )
  {
    printf("malloc cluster center new error!\n");
    exit(1);
  }

  center_calc = (CenterCalc*)malloc(sizeof(CenterCalc) * cluster_count);
  if( !center_calc )
  {
    printf("malloc error: center_calc!\n");
    exit(1);
  }

  data_size_per_cluster = (int*)malloc(sizeof(int) * (cluster_count));
  if( !data_size_per_cluster )
  {
    printf("malloc error: data_size_per_cluster\n");
    exit(1);
  }
 
}

void memoryFree()
{
  free(data);
  data = NULL;
  free(cluster_center_init_index);
  cluster_center_init_index = NULL;
  free(distance_from_center);
  distance_from_center = NULL;
  free(cluster_center);
  cluster_center = NULL;
  free(center_calc);
  center_calc = NULL;
  free(data_size_per_cluster);
  data_size_per_cluster = NULL;
}

//從文件中讀入每一個點的x和y值
void readDataFromFile()
{
  int i;
  FILE* fread;
 
  if( NULL == (fread = fopen(filename, "r")))
  {
    printf("open file(%s) error!\n", filename);
    exit(1);
  }

  for( i = 0; i < data_size_total; i++ )
  {
    if( 2 != fscanf(fread, "%d %d ", &data[i].x_value, &data[i].y_value))
    {
      printf("fscanf error: %d\n", i);
    }
    data[i].cluster_id = -1;    //初始時每一個點所屬的cluster id均置爲-1

    printf("After reading, point index:%d, X:%d, Y:%d, cluster_id:%d\n", i, data[i].x_value, data[i].y_value, data[i].cluster_id);
  }
}
 

//根據傳入的cluster_count來隨機的選擇一個點做爲 一個cluster的center  
void initialCluster()
{
  int i,j;
  int random;
    
  //產生初始化的cluster_count個聚類  
  for( i = 0; i < cluster_count; i++ )
  {
    cluster_center_init_index[i] = -1;
  }
  //隨機選擇一個點做爲每一個cluster的center(不重複)
  for( i = 0; i < cluster_count; i++ )
  {
    Reselect:
        random = rand() % (data_size_total - 1);
        for(j = 0; j < i; j++) {
            if(random == cluster_center_init_index[j])
                goto Reselect;
        }

    cluster_center_init_index[i] = random;
    printf("cluster_id: %d, located in point index:%d\n", i, random);  
  }
  //將隨機選擇的點做爲center,同時這個點的cluster id也就肯定了
  for( i = 0; i < cluster_count; i++ )
  {
    cluster_center[i].x_value = data[cluster_center_init_index[i]].x_value;
    cluster_center[i].y_value = data[cluster_center_init_index[i]].y_value;
    cluster_center[i].cluster_id = i;
    data[cluster_center_init_index[i]].cluster_id = i;

    printf("cluster_id:%d, index:%d, x_value:%f, y_value:%f\n", cluster_center[i].cluster_id, cluster_center_init_index[i], cluster_center[i].x_value, cluster_center[i].y_value);
  }
}
 

//計算一個點到一個cluster center的distance
void calcDistance2OneCenter(int point_id,int center_id)
{
  distance_from_center[center_id] = sqrt( (data[point_id].x_value-cluster_center[center_id].x_value)*(double)(data[point_id].x_value-cluster_center[center_id].x_value) + (double)(data[point_id].y_value-cluster_center[center_id].y_value) *              (data[point_id].y_value-cluster_center[center_id].y_value) );
}
 
//計算一個點到每一個cluster center的distance
void calcDistance2AllCenters(int point_id)
{
  int i;
  for( i = 0; i < cluster_count; i++ )
  {
    calcDistance2OneCenter(point_id, i);
  }
}
 
//肯定一個點屬於哪個cluster center(取距離最小的)
void partition4OnePoint(int point_id)
{
  int i;
  int min_index = 0;
  double min_value = distance_from_center[0];
  for( i = 0; i < cluster_count; i++ )
  {
    if( distance_from_center[i] < min_value )
    {
      min_value = distance_from_center[i];
      min_index = i;
    }
  }
 
  data[point_id].cluster_id = cluster_center[min_index].cluster_id;
}

//在一輪的聚類中獲得全部的point所屬於的cluster center
void partition4AllPointOneCluster()
{
  int i;
  for( i = 0; i < data_size_total; i++ )
  {
    if( data[i].cluster_id != -1 )  //這個點就是center,不須要計算
      continue;
    else
    {
      calcDistance2AllCenters(i);  //計算第i個點到全部center的distance
      partition4OnePoint(i);          //根據distance對第i個點進行partition
    }
  }
}

//從新計算新的cluster center
void calcClusterCenter()
{
  int i;

  memset(center_calc, 0, sizeof(CenterCalc) * cluster_count);
  memset(data_size_per_cluster, 0, sizeof(int) * cluster_count);
  //分別對每一個cluster內的每一個點的X和Y求和,並計每一個cluster內點的個數
  for( i = 0; i < data_size_total; i++ )
  {
    center_calc[data[i].cluster_id].x_value += data[i].x_value;
    center_calc[data[i].cluster_id].y_value += data[i].y_value;
    data_size_per_cluster[data[i].cluster_id]++;
  }
  //計算每一個cluster內點的X和Y的均值做爲center
  for( i = 0; i < cluster_count; i++ )
  {
     if(data_size_per_cluster[i] != 0) {
        center_calc[i].x_value = center_calc[i].x_value/ (double)(data_size_per_cluster[i]);
        center_calc[i].y_value = center_calc[i].y_value/ (double)(data_size_per_cluster[i]);開發

        printf(" cluster %d point cnt:%d\n", i, data_size_per_cluster[i]);
        printf(" cluster %d center: X:%f, Y:%f\n", i, center_calc[i].x_value, center_calc[i].y_value);
    }
    else
          printf(" cluster %d count is zero\n", i);
  }
 
  //比較新的和舊的cluster center值的差異。若是是相等的,則中止K-means算法。
  compareNewOldClusterCenter(center_calc);
 
  //將新的cluster center的值放入cluster_center結構體中
  for( i = 0; i < cluster_count; i++ )
  {
    cluster_center[i].x_value = center_calc[i].x_value;
    cluster_center[i].y_value = center_calc[i].y_value;
    cluster_center[i].cluster_id = i;
  }

  //在從新計算了新的cluster center以後,要從新來爲每個Point進行聚類,因此data中用於表示聚類ID的cluster_id要都從新置爲-1。
  for( i = 0; i < data_size_total; i++ )
  {
    data[i].cluster_id = -1;
  }
}
 
//比較新舊的cluster center的值,徹底同樣表示聚類完成
void compareNewOldClusterCenter(CenterCalc* center_calc)
{
  int i;
  is_continue = 0;       //等於0表示不要繼續,1表示要繼續
  for( i = 0; i < cluster_count; i++ )
  {
    if( center_calc[i].x_value != cluster_center[i].x_value || center_calc[i].y_value != cluster_center[i].y_value)
    {
      is_continue = 1;
      break;
    }
  }
}
 
//K-means算法
void kmeans()
{
  int rounds;
  for( rounds = 0; rounds < MAX_ROUNDS; rounds++ )
  {
    printf("\nRounds : %d             \n", rounds+1);
    partition4AllPointOneCluster();
    calcClusterCenter();
    if( 0 == is_continue )
    {
       printf("\n after %d rounds, the classification is ok and can stop.\n", rounds+1);
       break;  
    }
  }
}

string

編譯後生成可執行文件kmeans,輸入的文件裏共有6個點,分別爲(0, 0), (4, 4), (4, 5), (0, 1), (3, 6) ,(4, 9),要求分紅兩類。運行可執行程序後獲得結果以下:it

$ ./kmeans 6 data 2
After reading, point index:0, X:0, Y:0, cluster_id:-1
After reading, point index:1, X:4, Y:4, cluster_id:-1
After reading, point index:2, X:4, Y:5, cluster_id:-1
After reading, point index:3, X:0, Y:1, cluster_id:-1
After reading, point index:4, X:3, Y:6, cluster_id:-1
After reading, point index:5, X:4, Y:9, cluster_id:-1


cluster_id: 0, located in point index:3
cluster_id: 1, located in point index:1
cluster_id:0, index:3, x_value:0.000000, y_value:1.000000
cluster_id:1, index:1, x_value:4.000000, y_value:4.000000

Rounds : 1             
 cluster 0 point cnt:2
 cluster 0 center: X:0.000000, Y:0.500000
 cluster 1 point cnt:4
 cluster 1 center: X:3.750000, Y:6.000000

Rounds : 2             
 cluster 0 point cnt:2
 cluster 0 center: X:0.000000, Y:0.500000
 cluster 1 point cnt:4
 cluster 1 center: X:3.750000, Y:6.000000

 after 2 rounds, the classification is ok and can stop.

即兩輪後聚類就行了,(0, 0),(0, 1)一類,(4, 4), (4, 5), (3, 6) ,(4, 9)一類。

相關文章
相關標籤/搜索