「Android研習社」深刻研究源碼:Android10.0系統啓動流程(二)init進程

前言node

上篇文章對系統啓動流程進行了一個大概的梳理,咱們知道了init進程是由內核態的0號進程idle(wrapper)啓動起來的,今天咱們就來深刻挖掘下,init進程到底作了哪些事情linux

社羣正式開放android

Android研習社-技術交流羣,已經正式對外開放了,加wx:s419505080s,拉你進羣api

福利活動安全

Android研習社機械工業出版社聯合發起的贈書活動正在進行中,歡迎你們點擊連接參與bash

正文

總體流程概覽

具體源碼分析

init的源碼位於system/core/init包下,咱們先從入口類main.cpp來看session

int main(int argc, char** argv) {
#if __has_feature(address_sanitizer)
    __asan_set_error_report_callback(AsanReportCallback);
#endif

    if (!strcmp(basename(argv[0]), "ueventd")) {
        return ueventd_main(argc, argv);
    }

    if (argc > 1) {
        if (!strcmp(argv[1], "subcontext")) {
            android::base::InitLogging(argv, &android::base::KernelLogger);
            const BuiltinFunctionMap function_map;

            return SubcontextMain(argc, argv, &function_map);
        }

        if (!strcmp(argv[1], "selinux_setup")) {
            // This function initializes SELinux then execs init to run in the init SELinux context.
            return SetupSelinux(argv); //對SELinux進行初始化,並經過execs的系統調用開啓init進程
        }

        if (!strcmp(argv[1], "second_stage")) {
            return SecondStageMain(argc, argv);  //第二階段
        }
    }

    return FirstStageMain(argc, argv);   //第一階段
}
複製代碼

能夠看到main.cpp的函數跟以前版本有了很大的區別併發

拿Android9.0的源碼androidxref.com/9.0.0_r3/xr…來講,Android10中並不僅是調用init::main,而是把部分流程性的判斷放到的mian.cpp中來作,因此這裏若是按照書上或者文章中所說的,直接去找init.cpp中的main函數,實際上是找不到入口的app

init進程是如何啓動的

先來看看init進程是如何啓動的dom

system/core/Selinux.cpp

// This function initializes SELinux then execs init to run in the init SELinux context.
int SetupSelinux(char** argv) {
    InitKernelLogging(argv);

    if (REBOOT_BOOTLOADER_ON_PANIC) {
        InstallRebootSignalHandlers();
    }

    // Set up SELinux, loading the SELinux policy.
    SelinuxSetupKernelLogging();
    SelinuxInitialize();

    // We're in the kernel domain and want to transition to the init domain. File systems that // store SELabels in their xattrs, such as ext4 do not need an explicit restorecon here, // but other file systems do. In particular, this is needed for ramdisks such as the // recovery image for A/B devices. if (selinux_android_restorecon("/system/bin/init", 0) == -1) { PLOG(FATAL) << "restorecon failed of /system/bin/init failed"; } const char* path = "/system/bin/init"; //init二進制文件的目錄 const char* args[] = {path, "second_stage", nullptr}; execv(path, const_cast<char**>(args));//調用execv開啓init進程 // execv() only returns if an error happened, in which case we // panic and never return from this function. PLOG(FATAL) << "execv(\"" << path << "\") failed"; return 1; } 複製代碼

上面的SetupSelinux函數主要是經過evecv來開啓init進程

FirstStageMain作了哪些工做

咱們再來看下第一階段的函數FirstStageMain作了哪些工做

system/core/first_stage_main.cpp

int FirstStageMain(int argc, char** argv) {
    if (REBOOT_BOOTLOADER_ON_PANIC) {  //是否認義由init.mk決定
        InstallRebootSignalHandlers(); //處理init掛掉的狀況,會重啓bootloader
    }

    boot_clock::time_point start_time = boot_clock::now();

    std::vector<std::pair<std::string, int>> errors;
#define CHECKCALL(x) 
    if (x != 0) errors.emplace_back(#x " failed", errno);

    // Clear the umask.
    umask(0);
   
    CHECKCALL(clearenv());
    CHECKCALL(setenv("PATH", _PATH_DEFPATH, 1));
    // Get the basic filesystem setup we need put together in the initramdisk
    // on / and then we'll let the rc file figure out the rest. CHECKCALL(mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755")); CHECKCALL(mkdir("/dev/pts", 0755)); CHECKCALL(mkdir("/dev/socket", 0755)); CHECKCALL(mount("devpts", "/dev/pts", "devpts", 0, NULL)); #define MAKE_STR(x) __STRING(x) CHECKCALL(mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC))); #undef MAKE_STR // Don't expose the raw commandline to unprivileged processes.
    CHECKCALL(chmod("/proc/cmdline", 0440));
    gid_t groups[] = {AID_READPROC};
    CHECKCALL(setgroups(arraysize(groups), groups)); //設置用戶組
    CHECKCALL(mount("sysfs", "/sys", "sysfs", 0, NULL)); //掛載系統文件
    CHECKCALL(mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL));
    
    CHECKCALL(mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11)));
    
    if constexpr (WORLD_WRITABLE_KMSG) {
        CHECKCALL(mknod("/dev/kmsg_debug", S_IFCHR | 0622, makedev(1, 11)));
    }

    CHECKCALL(mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8)));
    CHECKCALL(mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9)));

    // This is needed for log wrapper, which gets called before ueventd runs.
    CHECKCALL(mknod("/dev/ptmx", S_IFCHR | 0666, makedev(5, 2)));
    CHECKCALL(mknod("/dev/null", S_IFCHR | 0666, makedev(1, 3)));

    // These below mounts are done in first stage init so that first stage mount can mount
    // subdirectories of /mnt/{vendor,product}/.  Other mounts, not required by first stage mount,
    // should be done in rc files.
    // Mount staging areas for devices managed by vold
    // See storage config details at http://source.android.com/devices/storage/
    CHECKCALL(mount("tmpfs", "/mnt", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV,
                    "mode=0755,uid=0,gid=1000"));
    // /mnt/vendor is used to mount vendor-specific partitions that can not be
    // part of the vendor partition, e.g. because they are mounted read-write.
    CHECKCALL(mkdir("/mnt/vendor", 0755));
    // /mnt/product is used to mount product-specific partitions that can not be
    // part of the product partition, e.g. because they are mounted read-write.
    CHECKCALL(mkdir("/mnt/product", 0755));

    // /apex is used to mount APEXes
    CHECKCALL(mount("tmpfs", "/apex", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV,
                    "mode=0755,uid=0,gid=0"));

    // /debug_ramdisk is used to preserve additional files from the debug ramdisk
    CHECKCALL(mount("tmpfs", "/debug_ramdisk", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV,
                    "mode=0755,uid=0,gid=0"));
#undef CHECKCALL

    SetStdioToDevNull(argv);
    // Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually
    // talk to the outside world...
    InitKernelLogging(argv);

    if (!errors.empty()) {
        for (const auto& [error_string, error_errno] : errors) {
            LOG(ERROR) << error_string << " " << strerror(error_errno);
        }
        LOG(FATAL) << "Init encountered errors starting first stage, aborting";
    }

    LOG(INFO) << "init first stage started!";

    auto old_root_dir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/"), closedir};
    if (!old_root_dir) {
        PLOG(ERROR) << "Could not opendir(\"/\"), not freeing ramdisk";
    }

    struct stat old_root_info;
    if (stat("/", &old_root_info) != 0) {
        PLOG(ERROR) << "Could not stat(\"/\"), not freeing ramdisk";
        old_root_dir.reset();
    }

    if (ForceNormalBoot()) {
        mkdir("/first_stage_ramdisk", 0755);
        // SwitchRoot() must be called with a mount point as the target, so we bind mount the
        // target directory to itself here.
        if (mount("/first_stage_ramdisk", "/first_stage_ramdisk", nullptr, MS_BIND, nullptr) != 0) {
            LOG(FATAL) << "Could not bind mount /first_stage_ramdisk to itself";
        }
        SwitchRoot("/first_stage_ramdisk");
    }

    // If this file is present, the second-stage init will use a userdebug sepolicy
    // and load adb_debug.prop to allow adb root, if the device is unlocked.
    if (access("/force_debuggable", F_OK) == 0) { //若是該文件存在且已經解鎖bootbloade r,則容許調用adb root指令(userdebug sepolicy)
        std::error_code ec;  // to invoke the overloaded copy_file() that won't throw. if (!fs::copy_file("/adb_debug.prop", kDebugRamdiskProp, ec) || !fs::copy_file("/userdebug_plat_sepolicy.cil", kDebugRamdiskSEPolicy, ec)) { LOG(ERROR) << "Failed to setup debug ramdisk"; } else { // setenv for second-stage init to read above kDebugRamdisk* files. setenv("INIT_FORCE_DEBUGGABLE", "true", 1); } } if (!DoFirstStageMount()) { LOG(FATAL) << "Failed to mount required partitions early ..."; } struct stat new_root_info; if (stat("/", &new_root_info) != 0) { PLOG(ERROR) << "Could not stat(\"/\"), not freeing ramdisk"; old_root_dir.reset(); } if (old_root_dir && old_root_info.st_dev != new_root_info.st_dev) { FreeRamdisk(old_root_dir.get(), old_root_info.st_dev); } SetInitAvbVersionInRecovery(); static constexpr uint32_t kNanosecondsPerMillisecond = 1e6; uint64_t start_ms = start_time.time_since_epoch().count() / kNanosecondsPerMillisecond; setenv("INIT_STARTED_AT", std::to_string(start_ms).c_str(), 1); const char* path = "/system/bin/init"; //找到init的二進制文件目錄 const char* args[] = {path, "selinux_setup", nullptr}; execv(path, const_cast<char**>(args)); //經過execv來啓動init進程 // execv() only returns if an error happened, in which case we // panic and never fall through this conditional. PLOG(FATAL) << "execv(\"" << path << "\") failed"; return 1; } 複製代碼

主要代碼處已經作處了註釋,如今來總結下FirstStageMain的工做

  1. 處理init進程掛掉的狀況
  2. 設置用戶組,掛載相關係統文件
  3. 根據/force_debuggable文件來判斷是否容許adb root指令
  4. 找到init的二進制文件目錄,經過execv來啓動init進程

至此init進程就被啓動起來了,咱們在回來看看SecondStageMain函數接下來作了哪些工做

SecondStageMain作了哪些工做

int SecondStageMain(int argc, char** argv) {
    if (REBOOT_BOOTLOADER_ON_PANIC) {
        InstallRebootSignalHandlers();
    }

    SetStdioToDevNull(argv);
    InitKernelLogging(argv);
    LOG(INFO) << "init second stage started!";

    // Set init and its forked children's oom_adj. if (auto result = WriteFile("/proc/1/oom_score_adj", "-1000"); !result) { LOG(ERROR) << "Unable to write -1000 to /proc/1/oom_score_adj: " << result.error(); } // Enable seccomp if global boot option was passed (otherwise it is enabled in zygote). GlobalSeccomp(); // Set up a session keyring that all processes will have access to. It // will hold things like FBE encryption keys. No process should override // its session keyring. keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 1); // Indicate that booting is in progress to background fw loaders, etc. close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000)); property_init(); //初始化系統屬性,使用mmap共享內存,"/dev/__properties__/property_info" // If arguments are passed both on the command line and in DT, // properties set in DT always have priority over the command-line ones. process_kernel_dt(); process_kernel_cmdline(); // Propagate the kernel variables to internal variables // used by init as well as the current required properties. export_kernel_boot_props(); // Make the time that init started available for bootstat to log. property_set("ro.boottime.init", getenv("INIT_STARTED_AT")); property_set("ro.boottime.init.selinux", getenv("INIT_SELINUX_TOOK")); // Set libavb version for Framework-only OTA match in Treble build. const char* avb_version = getenv("INIT_AVB_VERSION"); if (avb_version) property_set("ro.boot.avb_version", avb_version); // See if need to load debug props to allow adb root, when the device is unlocked. const char* force_debuggable_env = getenv("INIT_FORCE_DEBUGGABLE"); if (force_debuggable_env && AvbHandle::IsDeviceUnlocked()) { load_debug_prop = "true"s == force_debuggable_env; } // Clean up our environment. unsetenv("INIT_STARTED_AT"); unsetenv("INIT_SELINUX_TOOK"); unsetenv("INIT_AVB_VERSION"); unsetenv("INIT_FORCE_DEBUGGABLE"); // Now set up SELinux for second stage. SelinuxSetupKernelLogging(); SelabelInitialize(); SelinuxRestoreContext(); Epoll epoll; //使用IO複用機制,epoll,即 event poll,是poll機制的升級版 if (auto result = epoll.Open(); !result) { PLOG(FATAL) << result.error(); } InstallSignalFdHandler(&epoll); //使用epoll對init子進程的信號進行監聽 property_load_boot_defaults(load_debug_prop); UmountDebugRamdisk(); fs_mgr_vendor_overlay_mount_all(); export_oem_lock_status(); StartPropertyService(&epoll); //開啓屬性服務,並註冊到epoll中 MountHandler mount_handler(&epoll); set_usb_controller(); const BuiltinFunctionMap function_map; Action::set_function_map(&function_map); if (!SetupMountNamespaces()) { PLOG(FATAL) << "SetupMountNamespaces failed"; } subcontexts = InitializeSubcontexts(); ActionManager& am = ActionManager::GetInstance(); ServiceList& sm = ServiceList::GetInstance(); LoadBootScripts(am, sm); //加載系統啓動腳本"/init.rc" // Turning this on and letting the INFO logging be discarded adds 0.2s to // Nexus 9 boot time, so it's disabled by default.
    if (false) DumpState();

    // Make the GSI status available before scripts start running.
    if (android::gsi::IsGsiRunning()) {
        property_set("ro.gsid.image_running", "1");
    } else {
        property_set("ro.gsid.image_running", "0");
    }

    am.QueueBuiltinAction(SetupCgroupsAction, "SetupCgroups");

    am.QueueEventTrigger("early-init");

    // Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...
    am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done");
    // ... so that we can start queuing up actions that require stuff from /dev.
    am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng");
    am.QueueBuiltinAction(SetMmapRndBitsAction, "SetMmapRndBits");
    am.QueueBuiltinAction(SetKptrRestrictAction, "SetKptrRestrict");
    Keychords keychords;
    am.QueueBuiltinAction(
        [&epoll, &keychords](const BuiltinArguments& args) -> Result<Success> {
            for (const auto& svc : ServiceList::GetInstance()) {
                keychords.Register(svc->keycodes());
            }
            keychords.Start(&epoll, HandleKeychord);
            return Success();
        },
        "KeychordInit");
    am.QueueBuiltinAction(console_init_action, "console_init");

    // Trigger all the boot actions to get us started.
    am.QueueEventTrigger("init");

    // Starting the BoringSSL self test, for NIAP certification compliance.
    am.QueueBuiltinAction(StartBoringSslSelfTest, "StartBoringSslSelfTest");

    // Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random
    // wasn't ready immediately after wait_for_coldboot_done am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng"); // Initialize binder before bringing up other system services am.QueueBuiltinAction(InitBinder, "InitBinder"); // Don't mount filesystems or start core system services in charger mode.
    std::string bootmode = GetProperty("ro.bootmode", "");
    if (bootmode == "charger") {
        am.QueueEventTrigger("charger");
    } else {
        am.QueueEventTrigger("late-init");
    }

    // Run all property triggers based on current state of the properties.
    am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers");
	//解析啓動腳本
    while (true) {
        // By default, sleep until something happens.
        auto epoll_timeout = std::optional<std::chrono::milliseconds>{};

        if (do_shutdown && !shutting_down) {
            do_shutdown = false;
            if (HandlePowerctlMessage(shutdown_command)) {
                shutting_down = true;
            }
        }

        if (!(waiting_for_prop || Service::is_exec_service_running())) {
            am.ExecuteOneCommand();
        }
        if (!(waiting_for_prop || Service::is_exec_service_running())) {
            if (!shutting_down) {
                auto next_process_action_time = HandleProcessActions();

                // If there's a process that needs restarting, wake up in time for that. if (next_process_action_time) { epoll_timeout = std::chrono::ceil<std::chrono::milliseconds>( *next_process_action_time - boot_clock::now()); if (*epoll_timeout < 0ms) epoll_timeout = 0ms; } } // If there's more work to do, wake up again immediately.
            if (am.HasMoreCommands()) epoll_timeout = 0ms;
        }

        if (auto result = epoll.Wait(epoll_timeout); !result) {
            LOG(ERROR) << result.error();
        }
    }

    return 0;
}

複製代碼

SecondStageMain的主要工做總結

咱們發現,該函數是實際上是system/core/init/init.cpp的入口函數,在Android9.0的版本中,該類的入口函數爲main,代碼中的關鍵部分我已經作了註釋,如今來咱們來總結一下SecondStageMain的主要工做

  1. 使用epoll對init子進程的信號進行監聽
  2. 初始化系統屬性,使用mmap共享內存,"/dev/properties/property_info" (重要)
  3. 開啓屬性服務,並註冊到epoll中(重要)
  4. 加載系統啓動腳本"/init.rc"
  5. 解析啓動腳本,啓動相關服務

深刻挖掘系統屬性

咱們再來進一步去深刻挖掘下,系統屬性是如何初始化的

system/core/init/property_service.cpp

void property_init() {
    mkdir("/dev/__properties__", S_IRWXU | S_IXGRP | S_IXOTH);
    CreateSerializedPropertyInfo();
    if (__system_property_area_init()) { //初始化system_property內存區域
        LOG(FATAL) << "Failed to initialize property area";
    }
    if (!property_info_area.LoadDefaultPath()) {
        LOG(FATAL) << "Failed to load serialized property info file";
    }
}
複製代碼

再來看下__system_property_area_init()這個函數,這裏已經到了bionic包中 /Volumes/Fwk_Jack/WORKING_DIRECTORY/bionic/libc/bionic/system_property_api.cpp

__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int __system_property_area_init() {
  bool fsetxattr_failed = false;
  return system_properties.AreaInit(PROP_FILENAME, &fsetxattr_failed) && !fsetxattr_failed ? 0 : -1;
}
複製代碼

這個函數又調用了system_properties.AreaInit(),咱們接着跟下去 /bionic/libc/system_properties/system_properties.cpp

bool SystemProperties::AreaInit(const char* filename, bool* fsetxattr_failed) {
  if (strlen(filename) >= PROP_FILENAME_MAX) {
    return false;
  }
  strcpy(property_filename_, filename);

  contexts_ = new (contexts_data_) ContextsSerialized(); 
  if (!contexts_->Initialize(true, property_filename_, fsetxattr_failed)) {
    return false;
  }
  initialized_ = true;
  return true;
}
複製代碼

這裏調用了contexts_->Initialize()函數

/bionic/libc/system_properties/contexts_serialized.cpp

bool ContextsSerialized::Initialize(bool writable, const char* filename, bool* fsetxattr_failed) {
  filename_ = filename;
  if (!InitializeProperties()) { //初始化系統屬性
    return false;
  }

  if (writable) {
    mkdir(filename_, S_IRWXU | S_IXGRP | S_IXOTH);
    bool open_failed = false;
    if (fsetxattr_failed) {
      *fsetxattr_failed = false;
    }

    for (size_t i = 0; i < num_context_nodes_; ++i) {
      if (!context_nodes_[i].Open(true, fsetxattr_failed)) {
        open_failed = true;
      }
    }
    if (open_failed || !MapSerialPropertyArea(true, fsetxattr_failed)) {
      FreeAndUnmap();
      return false;
    }
  } else {
    if (!MapSerialPropertyArea(false, nullptr)) {
      FreeAndUnmap();
      return false;
    }
  }
  return true;
}
複製代碼

調用InitializeProperties()初始化系統屬性

bool ContextsSerialized::InitializeProperties() {
  if (!property_info_area_file_.LoadDefaultPath()) { //加載默認系統屬性路徑
    return false;
  }

  if (!InitializeContextNodes()) {
    FreeAndUnmap();
    return false;
  }

  return true;
}
複製代碼

/system/core/property_service/libpropertyinfoparser/property_info_parser.cpp

bool PropertyInfoAreaFile::LoadDefaultPath() {
  return LoadPath("/dev/__properties__/property_info");//把文件加載到內存
}
複製代碼
bool PropertyInfoAreaFile::LoadPath(const char* filename) {
  int fd = open(filename, O_CLOEXEC | O_NOFOLLOW | O_RDONLY);

  struct stat fd_stat;
  if (fstat(fd, &fd_stat) < 0) {
    close(fd);
    return false;
  }

  if ((fd_stat.st_uid != 0) || (fd_stat.st_gid != 0) ||
      ((fd_stat.st_mode & (S_IWGRP | S_IWOTH)) != 0) ||
      (fd_stat.st_size < static_cast<off_t>(sizeof(PropertyInfoArea)))) {
    close(fd);
    return false;
  }

  auto mmap_size = fd_stat.st_size;
  //千呼萬喚始出來,終於到了最後一個,調用mmap函數建立共享內存,供其餘進程獲取系統屬性
  void* map_result = mmap(nullptr, mmap_size, PROT_READ, MAP_SHARED, fd, 0);
  if (map_result == MAP_FAILED) {
    close(fd);
    return false;
  }

  auto property_info_area = reinterpret_cast<PropertyInfoArea*>(map_result);
  if (property_info_area->minimum_supported_version() > 1 ||
      property_info_area->size() != mmap_size) {
    munmap(map_result, mmap_size);
    close(fd);
    return false;
  }

  close(fd);
  mmap_base_ = map_result;
  mmap_size_ = mmap_size;
  return true;
}
複製代碼

分析到這裏,系統屬性的初始化終於分析完了,如今來總結下,系統屬性初始化是使用了mmap的內存共享機制,來讓其餘進程來獲取系統屬性的

那既然能夠經過共享內存來訪問,爲何還須要開啓一個屬性服務呢?直接經過共享內存來設置系統屬性,不就行了麼?

這裏其實就涉及到安全性的問題了,若是全部進程均可以自由的修改系統屬性,那系統屬性,還能被成爲系統屬性嗎?因此Android設計爲,其餘進程只能經過共享內存來獲取系統屬性,而「修改」的權限則統一收攏到init進程中,開啓一個屬性服務,以下圖所示

深刻挖掘系統服務

下面再來進一步分析下,系統服務是如何開啓的

/system/core/init/property_service.cpp

void StartPropertyService(Epoll* epoll) {
    selinux_callback cb;
    cb.func_audit = SelinuxAuditCallback;
    selinux_set_callback(SELINUX_CB_AUDIT, cb);

    property_set("ro.property_service.version", "2"); //設置系統屬性

    property_set_fd = CreateSocket(PROP_SERVICE_NAME, SOCK_STREAM | SOCK_CLOEXEC | SOCK_NONBLOCK,
                                   false, 0666, 0, 0, nullptr); //建立socket服務端
    if (property_set_fd == -1) {
        PLOG(FATAL) << "start_property_service socket creation failed";
    }

    listen(property_set_fd, 8);  //監聽sokcet服務,最大併發數是8
    //註冊到epoll的handler中進行IO優化處理
    if (auto result = epoll->RegisterHandler(property_set_fd, handle_property_set_fd); !result) {
        PLOG(FATAL) << result.error();
    }
}
複製代碼

開啓屬性服務的重要步驟已經註釋說明了,如今再來總結下

系統服務開啓流程

  1. 建立socket服務端
  2. 監聽sokcet服務,最大併發數是8
  3. 註冊到epoll的handler中進行IO優化處理

至此,init進程的主要工做流程和重要原理已分析完成

接下來的這篇文章,我會以視頻加講義的方式,帶着你們去讀源碼,讓你們真正瞭解應該如何把源碼讀起來

寫在最後

以爲不錯?不妨點個贊,而後關注下?

鄭重聲明

本文原做者爲釋然,版權©️歸Android研習社全部,侵權必究

相關文章
相關標籤/搜索