數據挖掘流程

0 - 引入

  並行處理、流水線處理、自動化調參、持久化是sklearn優雅地進行數據挖掘的核心。html

  • 並行處理和流水線處理是將多個特徵處理工做,甚至包括模型訓練工做組合成一個工做。
  • 在組合的前提下,自動化調參技術幫咱們省去了人工調參的繁瑣。
  • 訓練好的模型是貯存在內存中的數據,持久化可以將這些數據保存到文件系統中,以後使用時能夠直接加在無需再次訓練。
from numpy import hstack, vstack, array, median, nan
from numpy.random import choice
from sklearn.datasets import load_iris

iris = load_iris()
iris.data
#特徵矩陣加工
#使用vstack增長一行含缺失值的樣本(nan, nan, nan, nan)
#使用hstack增長一列表示花的顏色(0-白、1-黃、2-紅),花的顏色是隨機的,意味着顏色並不影響花的分類
iris.data = hstack((choice([0, 1, 2], size=iris.data.shape[0]+1).reshape(-1,1), vstack((iris.data, array([nan, nan, nan, nan]).reshape(1,-1)))))
#目標值向量加工
#增長一個目標值,對應含缺失值的樣本,值爲衆數
iris.target = hstack((iris.target, array([median(iris.target)])))

1 - sklearn表查詢

  下標是上述介紹的技術在sklearn說對應的方法或者類,以便於查詢,具體使用後面部分將詳細展開。數組

類或方法 說明
sklearn.pipeline Pipeline 流水線處理
sklearn.pipeline FeatureUnion 並行處理
sklearn.model_selection GridSearchCV 網絡搜索調參
externals.joblib dump 數據持久化
externals.joblib load 從文件系統中加載數據至內存

 

 

 

 

 

 

 

2 - 並行處理

  並行處理能夠分爲總體並行處理和部分並行處理,其區別以下:網絡

  • 總體並行處理:處理的每一個工做的輸入都是特徵矩陣的總體;
  • 部分並行處理:可定義每一個工做須要輸入的特徵矩陣的列。

2.1 - 總體並行處理

  代碼以下:dom

from numpy import log1p
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import Binarizer
from sklearn.pipeline import FeatureUnion

step2_1 = ('ToLog', FunctionTransformer(log1p))
step2_2 = ('ToBinary', Binarizer())
step2 = ('FeatureUnion', FeatureUnion(transformer_list=[step2_1, step2_2]))

2.2 - 部分並行處理

  在某些特定場景下,咱們只須要對特徵矩陣的某些列進行轉換,而不是全部列,所以能夠使用部分並行處理,代碼以下:函數

from sklearn.pipeline import FeatureUnion, _fit_one_transformer, _fit_transform_one, _transform_one 
from sklearn.externals.joblib import Parallel, delayed
from scipy import sparse
import numpy as np

#部分並行處理,繼承FeatureUnion
class FeatureUnionExt(FeatureUnion):
    #相比FeatureUnion,多了idx_list參數,其表示每一個並行工做須要讀取的特徵矩陣的列
    def __init__(self, transformer_list, idx_list, n_jobs=1, transformer_weights=None):
        self.idx_list = idx_list
        FeatureUnion.__init__(self, transformer_list=map(lambda trans:(trans[0], trans[1]), transformer_list), n_jobs=n_jobs, transformer_weights=transformer_weights)

    #因爲只部分讀取特徵矩陣,方法fit須要重構
    def fit(self, X, y=None):
        transformer_idx_list = map(lambda trans, idx:(trans[0], trans[1], idx), self.transformer_list, self.idx_list)
        transformers = Parallel(n_jobs=self.n_jobs)(
            #從特徵矩陣中提取部分輸入fit方法
            delayed(_fit_one_transformer)(trans, X[:,idx], y)
            for name, trans, idx in transformer_idx_list)
        self._update_transformer_list(transformers)
        return self

    #因爲只部分讀取特徵矩陣,方法fit_transform須要重構
    def fit_transform(self, X, y=None, **fit_params):
        transformer_idx_list = map(lambda trans, idx:(trans[0], trans[1], idx), self.transformer_list, self.idx_list)
        result = Parallel(n_jobs=self.n_jobs)(
            #從特徵矩陣中提取部分輸入fit_transform方法
            delayed(_fit_transform_one)(trans, name, X[:,idx], y,
                                        self.transformer_weights, **fit_params)
            for name, trans, idx in transformer_idx_list)

        Xs, transformers = zip(*result)
        self._update_transformer_list(transformers)
        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = np.hstack(Xs)
        return Xs

    #因爲只部分讀取特徵矩陣,方法transform須要重構
    def transform(self, X):
        transformer_idx_list = map(lambda trans, idx:(trans[0], trans[1], idx), self.transformer_list, self.idx_list)
        Xs = Parallel(n_jobs=self.n_jobs)(
            #從特徵矩陣中提取部分輸入transform方法
            delayed(_transform_one)(trans, name, X[:,idx], self.transformer_weights)
            for name, trans, idx in transformer_idx_list)
        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = np.hstack(Xs)
        return Xs

  咱們對特徵矩陣的第1列進行定性特徵編碼,對第二、三、4列進行對數函數轉換,對第5列進行定量特徵二值化處理,代碼以下:編碼

from numpy import log1p
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import Binarizer

step2_1 = ('OneHotEncoder', OneHotEncoder(sparse=False))
step2_2 = ('ToLog', FunctionTransformer(log1p))
step2_3 = ('ToBinary', Binarizer())

step2 = ('FeatureUnionExt', FeatureUnionExt(transformer_list=[step2_1, step2_2, step2_3], idx_list=[[0], [1, 2, 3], [4]]))

3 - 流水線處理

  流水線上除了最後一個工做外,都要執行fit_transform方法,上一個工做的輸出做爲下一個工做的輸入,最後一個工做必須實現fit方法,輸入爲上一個工做的輸出,代碼以下:spa

from numpy import log1p
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import Binarizer
from sklearn.preprocessing import MinMaxScaler
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

step1 = ('Imputer', Imputer())
step2_1 = ('OneHotEncoder', OneHotEncoder(sparse=False))
step2_2 = ('ToLog', FunctionTransformer(log1p))
step2_3 = ('ToBinary', Binarizer())
step2 = ('FeatureUnionExt', FeatureUnionExt(transformer_list=[step2_1, step2_2, step2_3], idx_list=[[0], [1, 2, 3], [4]]))
step3 = ('MinMaxScaler', MinMaxScaler())
step4 = ('SelectKBest', SelectKBest(chi2, k=3))
step5 = ('PCA', PCA(n_components=2))
step6 = ('LogisticRegression', LogisticRegression(penalty='l2'))

pipeline = Pipeline(steps=[step1, step2, step3, step4, step5, step6])

4 - 自動化調參

  使用網格搜索調參,代碼以下:code

from sklearn.model_selection import GridSearchCV

#新建網格搜索對象
#第一參數爲待訓練的模型
#param_grid爲待調參數組成的網格,字典格式,鍵爲參數名稱(格式「對象名稱__子對象名稱__參數名稱」),值爲可取的參數值列表
grid_search = GridSearchCV(pipeline, param_grid={'FeatureUnionExt__ToBinary__threshold':[1.0, 2.0, 3.0, 4.0], 'LogisticRegression__C':[0.1, 0.2, 0.4, 0.8]})

grid_search.fit(iris.data, iris.target)

5 - 持久化

  代碼以下:component

dump(grid_search, 'grid_search.dmp', compress=3)
grid_search = load('grid_search.dmp')

6 - 參考資料

http://www.cnblogs.com/jasonfreak/p/5448462.htmlorm

相關文章
相關標籤/搜索