JavaShuo
欄目
標籤
LineNet - a Zoomable CNN for Crowdsourced High Definition Maps Modeling in Urban Environments
時間 2021-01-12
標籤
車道線
網絡
欄目
系統網絡
简体版
原文
原文鏈接
一.概述 時間:2018.07 作者:Dun Liang 機構:Tsinghua University 內容:LineNet, a convolutional neural network with a novel prediction layer and a zoom module 數據集:TTLane 二.方法 1.方法介紹 網絡處理+後處理 2.網絡介紹 1)由2個模塊組成,line pre
>>阅读原文<<
相關文章
1.
轉:awesome-lane-detection
2.
Efficient Trajectory Planning for High Speed Flight in Unknown Environments
3.
泡泡一分鐘:Efficient Trajectory Planning for High Speed Flight in Unknown Environments
4.
Procedural Modeling of Cities
5.
[轉] Implementing a CNN for Text Classification in TensorFlow
6.
Demystifying Performance Assessments In Scaled Down Environments
7.
Modeling High-Current Electrical Arcs: A Volt-Ampere Characteristic Perspective for AC and DC System
8.
Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments
9.
Improving MapReduce Performance in Heterogeneous Environments
10.
Complex urban dataset with multi-level sensors from highly diverse urban environments
更多相關文章...
•
Swift for-in 循環
-
Swift 教程
•
MyBatis environments
-
MyBatis教程
•
C# 中 foreach 遍歷的用法
•
Kotlin學習(一)基本語法
相關標籤/搜索
for...in
for..in
for.....in
definition
maps
modeling
urban
environments
high
cnn
系統網絡
MyBatis教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
NLP《詞彙表示方法(六)ELMO》
2.
必看!RDS 數據庫入門一本通(附網盤鏈接)
3.
阿里雲1C2G虛擬機【99/年】羊毛黨集合啦!
4.
10秒鐘的Cat 6A網線認證儀_DSX2-5000 CH
5.
074《從零開始學Python網絡爬蟲》小記
6.
實例12--會動的地圖
7.
聽薦 | 「談笑風聲」,一次投資圈的嘗試
8.
阿里技術官手寫800多頁PDF總結《精通Java Web整合開發》
9.
設計模式之☞狀態模式實戰
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
轉:awesome-lane-detection
2.
Efficient Trajectory Planning for High Speed Flight in Unknown Environments
3.
泡泡一分鐘:Efficient Trajectory Planning for High Speed Flight in Unknown Environments
4.
Procedural Modeling of Cities
5.
[轉] Implementing a CNN for Text Classification in TensorFlow
6.
Demystifying Performance Assessments In Scaled Down Environments
7.
Modeling High-Current Electrical Arcs: A Volt-Ampere Characteristic Perspective for AC and DC System
8.
Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments
9.
Improving MapReduce Performance in Heterogeneous Environments
10.
Complex urban dataset with multi-level sensors from highly diverse urban environments
>>更多相關文章<<