BZOJ3456php
真是一道經典好題,至此已經寫了分治\(NTT\),多項式求逆,多項式求\(ln\)三種寫法ios
咱們發現咱們要求的是大小爲\(n\)無向聯通圖的數量
而\(n\)個點的無向圖是由若干個無向聯通圖構成的
那麼咱們設\(F(x)\)爲無向聯通圖數量的指數型生成函數
設\(G(x)\)爲無向圖數量的指數型生成函數c++
\(G(x)\)很好求
而
\[G(x) = \frac{F(x)}{1!} + \frac{F^2(x)}{2!} + \frac{F^3(x)}{3!} + \dots = e^{F(x)}\]
則
\[F(x) = lnG(x)\]函數
多項式求\(ln\)便可spa
#include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<map> #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt) #define REP(i,n) for (int i = 1; i <= (n); i++) #define mp(a,b) make_pair<int,int>(a,b) #define cls(s) memset(s,0,sizeof(s)) #define cp pair<int,int> #define LL long long int using namespace std; const int maxn = 500005,maxm = 100005,INF = 1000000000; inline int read(){ int out = 0,flag = 1; char c = getchar(); while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();} while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();} return out * flag; } const int G = 3,P = 1004535809; int R[maxn]; inline int qpow(int a,LL b){ int re = 1; for (; b; b >>= 1,a = 1ll * a * a % P) if (b & 1) re = 1ll * re * a % P; return re; } void NTT(int* a,int n,int f){ for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]); for (int i = 1; i < n; i <<= 1){ int gn = qpow(G,(P - 1) / (i << 1)); for (int j = 0; j < n; j += (i << 1)){ int g = 1,x,y; for (int k = 0; k < i; k++,g = 1ll * g * gn % P){ x = a[j + k],y = 1ll * g * a[j + k + i] % P; a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P; } } } if (f == 1) return; int nv = qpow(n,P - 2); reverse(a + 1,a + n); for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P; } int n,c[maxn],f[maxn],g[maxn],Fv[maxn]; int fac[maxn],fv[maxn],inv[maxn]; void init(){ fac[0] = fac[1] = fv[0] = fv[1] = inv[0] = inv[1] = 1; for (int i = 2; i <= (n << 1); i++){ fac[i] = 1ll * fac[i - 1] * i % P; inv[i] = 1ll * (P - P / i) * inv[P % i] % P; fv[i] = 1ll * fv[i - 1] * inv[i] % P; } } void Inv(int* a,int* b,int deg){ if (deg == 1){b[0] = qpow(a[0],P - 2); return;} Inv(a,b,(deg + 1) >> 1); int n = 1,L = 0; while (n < (deg << 1)) n <<= 1,L++; for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1)); for (int i = 0; i < deg; i++) c[i] = a[i]; for (int i = deg; i < n; i++) c[i] = 0; NTT(c,n,1); NTT(b,n,1); for (int i = 0; i < n; i++) b[i] = 1ll * ((2ll - 1ll * c[i] * b[i] % P) + P) % P * b[i] % P; NTT(b,n,-1); for (int i = deg; i < n; i++) b[i] = 0; } void Der(int* a,int& n){ n--; for (int i = 0; i <= n; i++) a[i] = 1ll * a[i + 1] * (i + 1) % P; } void Int(int* a,int& n){ n++; for (int i = n; i; i--) a[i] = 1ll * a[i - 1] * inv[i] % P; } void Getln(int* a,int* b){ int deg = n; Inv(a,Fv,n + 1); Der(a,deg); int m = deg + n,n = 1,L = 0; while (n <= m) n <<= 1,L++; for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1)); NTT(a,n,1); NTT(Fv,n,1); for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * Fv[i] % P; NTT(a,n,-1); deg = m; Int(a,deg); for (int i = 0; i <= deg; i++) b[i] = a[i]; } int main(){ n = read(); init(); f[0] = f[1] = 1; for (int i = 2; i <= n; i++) f[i] = 1ll * qpow(2,1ll * i * (i - 1) / 2) * fv[i] % P; Getln(f,g); printf("%lld\n",1ll * g[n] * fac[n] % P); return 0; }