http://www.lydsy.com/JudgeOnline/problem.php?id=3456php
這個問題能夠考慮dp,利用補集思想ios
N個點的簡單圖總數量爲$2^{\binom{N}{2}}$,要求的是簡單聯通圖,因此能夠用總量減不連通的。spa
不連通的能夠經過枚舉與某個固定點的聯通的點的數量獲得$tot=\sum _{i=1} ^{N} \binom{N-1}{i-1}*dp[i]*2^{\binom{N-i}{2}}$blog
其中$dp[i]$表示的就是$i$個點的聯通圖數量。get
而後將公式稍稍變型整理成$\frac{dp[N]}{(N-1)!}=\frac{2^{\binom{N}{2}}}{(N-1)!}-\sum_{i=1}^{N-1}\frac{dp[i]}{(i-1)!}*\frac{2^{\binom{N-i}{2}}}{(N-i)!}$string
這個式子能夠利用 CDQ分治+NTT 在$O(Nlog^{2}N)$的時間獲得。it
至於這道題嗎,顯然是能夠多項式求逆來作的,複雜度$O(NlnN)$,上述作法本身寫的被卡常了,不過本機效果還不錯,留下代碼之後看看。io
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; #define LL long long #define P 1004535809LL #define G 3LL #define MAXN 800010 int N,len; inline LL Pow(LL x,LL y) {LL re=1; for (LL i=y; i; i>>=1,x=x*x%P) if (i&1) re=re*x%P; return re;} inline LL Inv(LL x) {return Pow(x,P-2);} int A[MAXN],B[MAXN],ans[MAXN],wn[31],dp[MAXN]; inline void Rader(int *x) { for (register int i=1,j=len>>1,k; i<len-1; i++) { if (i<j) swap(x[i],x[j]); k=len>>1; while (j>=k) j-=k,k>>=1; if (j<k) j+=k; } } inline void DFT(int *x,int opt) { Rader(x); for (register int h=2,id=0; h<=len; h<<=1) { LL Wn=wn[++id]; for (register int i=0; i<len; i+=h) { LL W=1; for (register int j=i; j<i+h/2; j++) { LL u=(LL)x[j]%P,t=(LL)W*x[j+h/2]%P; x[j]=(u+t)%P; x[j+h/2]=(u-t+P)%P; W=W*Wn%P; } } } if (opt==-1) { for (register int i=1; i<len/2; i++) swap(x[i],x[len-i]); for (register int i=0; i<len; i++) x[i]=(LL)x[i]*Inv(len)%P; } } inline void NTT() { DFT(A,1); DFT(B,1); for (register int i=0; i<len; i++) ans[i]=(LL)A[i]*B[i]%P; DFT(ans,-1); } int C2[MAXN],fac[MAXN],ifac[MAXN]; inline void CDQ(int l,int r) { if (l==r) { dp[l]=(C2[l]-(LL)dp[l]*fac[l-1]%P+P)%P; return; } int mid=(l+r)>>1; CDQ(l,mid); for (register int i=l; i<=mid; i++) A[i-l]=(LL)dp[i]*ifac[i-1]%P; for (register int i=0; i<=r-l; i++) B[i]=(LL)C2[i]*ifac[i]%P; for (register int i=mid-l+1; i<=r-l; i++) A[i]=0; len=1; while (len<((r-l+1)<<1)) len<<=1; for (register int i=r-l+1; i<len; i++) A[i]=B[i]=0; NTT(); for (register int i=mid+1; i<=r; i++) (dp[i]+=ans[i-l])%=P; CDQ(mid+1,r); } int main() { // freopen("count.in","r",stdin); // freopen("count.out","w",stdout); scanf("%d",&N); for (register int i=0; i<=30; i++) wn[i]=Pow(G,(P-1)/(1<<i)); fac[0]=ifac[0]=1; for (register int i=1; i<=N; i++) fac[i]=((LL)fac[i-1]*i)%P,ifac[i]=Inv(fac[i]); for (register int i=1; i<=N; i++) C2[i]=Pow(2LL,(LL)((LL)i*(i-1))/2); CDQ(1,N); printf("%d\n",dp[N]); return 0; }