在照着Tensorflow官網的demo敲了一遍分類器項目的代碼後,運行卻是成功了,結果也不錯。可是最終仍是要訓練本身的數據,因此嘗試準備加載自定義的數據,然而demo中只是出現了fashion_mnist.load_data()
並無詳細的讀取過程,隨後我又找了些資料,把讀取的過程記錄在這裏。
首先提一下須要用到的模塊:python
import os import keras import matplotlib.pyplot as plt from PIL import Image from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split
圖片分類器項目,首先肯定你要處理的圖片分辨率將是多少,這裏的例子爲30像素:數組
IMG_SIZE_X = 30 IMG_SIZE_Y = 30
其次肯定你圖片的方式目錄:網絡
image_path = r'D:\Projects\ImageClassifier\data\set' path = ".\data" # 你也可使用相對路徑的方式 # image_path =os.path.join(path, "set")
目錄下的結構以下:app
相應的label.txt以下:dom
動漫 風景 美女 物語 櫻花
接下來是接在labels.txt,以下:函數
label_name = "labels.txt" label_path = os.path.join(path, label_name) class_names = np.loadtxt(label_path, type(""))
這裏簡便起見,直接利用了numpy的loadtxt函數直接加載。測試
以後即是正式處理圖片數據了,註釋就寫在裏面了:ui
re_load = False re_build = False # re_load = True re_build = True data_name = "data.npz" data_path = os.path.join(path, data_name) model_name = "model.h5" model_path = os.path.join(path, model_name) count = 0 # 這裏判斷是否存在序列化以後的數據,re_load是一個開關,是否強制從新處理,測試用,能夠去除。 if not os.path.exists(data_path) or re_load: labels = [] images = [] print('Handle images') # 因爲label.txt是和圖片防止目錄的分類目錄一一對應的,即每一個子目錄的目錄名就是labels.txt裏的一個label,因此這裏能夠經過讀取class_names的每一項去拼接path後讀取 for index, name in enumerate(class_names): # 這裏是拼接後的子目錄path classpath = os.path.join(image_path, name) # 先判斷一下是不是目錄 if not os.path.isdir(classpath): continue # limit是測試時候用的這裏能夠去除 limit = 0 for image_name in os.listdir(classpath): if limit >= max_size: break # 這裏是拼接後的待處理的圖片path imagepath = os.path.join(classpath, image_name) count = count + 1 limit = limit + 1 # 利用Image打開圖片 img = Image.open(imagepath) # 縮放到你最初肯定要處理的圖片分辨率大小 img = img.resize((IMG_SIZE_X, IMG_SIZE_Y)) # 轉爲灰度圖片,這裏彩色通道會干擾結果,而且會加大計算量 img = img.convert("L") # 轉爲numpy數組 img = np.array(img) # 由(30,30)轉爲(1,30,30)(即`channels_first`),固然你也能夠轉換爲(30,30,1)(即`channels_last`)但爲了以後預覽處理後的圖片方便這裏採用了(1,30,30)的格式存放 img = np.reshape(img, (1, IMG_SIZE_X, IMG_SIZE_Y)) # 這裏利用循環生成labels數據,其中存放的實際是class_names中對應元素的索引 labels.append([index]) # 添加到images中,最後統一處理 images.append(img) # 循環中一些狀態的輸出,能夠去除 print("{} class: {} {} limit: {} {}" .format(count, index + 1, class_names[index], limit, imagepath)) # 最後一次性將images和labels都轉換成numpy數組 npy_data = np.array(images) npy_labels = np.array(labels) # 處理數據只須要一次,因此咱們選擇在這裏利用numpy自帶的方法將處理以後的數據序列化存儲 np.savez(data_path, x=npy_data, y=npy_labels) print("Save images by npz") else: # 若是存在序列化號的數據,便直接讀取,提升速度 npy_data = np.load(data_path)["x"] npy_labels = np.load(data_path)["y"] print("Load images by npz") image_data = npy_data labels_data = npy_labels
到了這裏原始數據的加工預處理便已經完成,只須要最後一步,就和demo中fashion_mnist.load_data()
返回的結果同樣了。代碼以下:spa
# 最後一步就是將原始數據分紅訓練數據和測試數據 train_images, test_images, train_labels, test_labels = \ train_test_split(image_data, labels_data, test_size=0.2, random_state=6)
這裏將相關信息打印的方法也附上:3d
print("_________________________________________________________________") print("%-28s %-s" % ("Name", "Shape")) print("=================================================================") print("%-28s %-s" % ("Image Data", image_data.shape)) print("%-28s %-s" % ("Labels Data", labels_data.shape)) print("=================================================================") print('Split train and test data,p=%') print("_________________________________________________________________") print("%-28s %-s" % ("Name", "Shape")) print("=================================================================") print("%-28s %-s" % ("Train Images", train_images.shape)) print("%-28s %-s" % ("Test Images", test_images.shape)) print("%-28s %-s" % ("Train Labels", train_labels.shape)) print("%-28s %-s" % ("Test Labels", test_labels.shape)) print("=================================================================")
以後別忘了歸一化喲:
print("Normalize images") train_images = train_images / 255.0 test_images = test_images / 255.0
最後附上讀取自定義數據的完整代碼:
import os import keras import matplotlib.pyplot as plt from PIL import Image from keras.layers import * from keras.models import * from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 支持中文 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用來正常顯示中文標籤 plt.rcParams['axes.unicode_minus'] = False # 用來正常顯示負號 re_load = False re_build = False # re_load = True re_build = True epochs = 50 batch_size = 5 count = 0 max_size = 2000000000 IMG_SIZE_X = 30 IMG_SIZE_Y = 30 np.random.seed(9277) image_path = r'D:\Projects\ImageClassifier\data\set' path = ".\data" data_name = "data.npz" data_path = os.path.join(path, data_name) model_name = "model.h5" model_path = os.path.join(path, model_name) label_name = "labels.txt" label_path = os.path.join(path, label_name) class_names = np.loadtxt(label_path, type("")) print('Load class names') if not os.path.exists(data_path) or re_load: labels = [] images = [] print('Handle images') for index, name in enumerate(class_names): classpath = os.path.join(image_path, name) if not os.path.isdir(classpath): continue limit = 0 for image_name in os.listdir(classpath): if limit >= max_size: break imagepath = os.path.join(classpath, image_name) count = count + 1 limit = limit + 1 img = Image.open(imagepath) img = img.resize((30, 30)) img = img.convert("L") img = np.array(img) img = np.reshape(img, (1, 30, 30)) # img = skimage.io.imread(imagepath, as_grey=True) # if img.shape[2] != 3: # print("{} shape is {}".format(image_name, img.shape)) # continue # data = transform.resize(img, (IMG_SIZE_X, IMG_SIZE_Y)) labels.append([index]) images.append(img) print("{} class: {} {} limit: {} {}" .format(count, index + 1, class_names[index], limit, imagepath)) npy_data = np.array(images) npy_labels = np.array(labels) np.savez(data_path, x=npy_data, y=npy_labels) print("Save images by npz") else: npy_data = np.load(data_path)["x"] npy_labels = np.load(data_path)["y"] print("Load images by npz") image_data = npy_data labels_data = npy_labels print("_________________________________________________________________") print("%-28s %-s" % ("Name", "Shape")) print("=================================================================") print("%-28s %-s" % ("Image Data", image_data.shape)) print("%-28s %-s" % ("Labels Data", labels_data.shape)) print("=================================================================") train_images, test_images, train_labels, test_labels = \ train_test_split(image_data, labels_data, test_size=0.2, random_state=6) print('Split train and test data,p=%') print("_________________________________________________________________") print("%-28s %-s" % ("Name", "Shape")) print("=================================================================") print("%-28s %-s" % ("Train Images", train_images.shape)) print("%-28s %-s" % ("Test Images", test_images.shape)) print("%-28s %-s" % ("Train Labels", train_labels.shape)) print("%-28s %-s" % ("Test Labels", test_labels.shape)) print("=================================================================") # 歸一化 # 咱們將這些值縮小到 0 到 1 之間,而後將其饋送到神經網絡模型。爲此,將圖像組件的數據類型從整數轉換爲浮點數,而後除以 255。如下是預處理圖像的函數: # 務必要以相同的方式對訓練集和測試集進行預處理: print("Normalize images") train_images = train_images / 255.0 test_images = test_images / 255.0