多項式多點求值和插值

本文以存板子爲主= =ios

對於比較通常的狀況,n次多項式在n個點求值和用n個點插值能夠作到$O(nlog^2n)$,而且這也是下界 而且這也是目前最好的bound。this

多項式多點求值spa

給一個多項式F和一堆值$x_1,x_2...x_n$,求出$F(x_1),F(x_2)...F(x_n)$。code

設$L(x)=\prod_{i=1}^{n/2}(x-x_i)$,$R(x)=\prod_{i=n/2+1}^n(x-x_i)$。blog

那麼對於${1}\leq{i}\leq{n/2}$,$F(x_i)=(F~mod~L)(x_i)$,對於${n/2}<{i}\leq{n}$,$F(x_i)=(F~mod~R)(x_i)$。遞歸便可。遞歸

多項式多點插值ip

給一堆值$x_1,x_2...x_n$、$y_1,y_2...y_n$,要求求出一個n-1次多項式知足$F(x_i)=y_i$。get

考慮拉格朗日插值:${F(x)=\sum_{i=1}^n{\frac{\prod_{{j}\neq{i}}{({x}-{x_j})}}{\prod_{{j}\neq{i}}{({x_i}-{x_j})}}{y_i}}}$。string

咱們先考慮對於每一個i,如何求出$\prod_{j\neq{i}}(x_i-x_j)$。設$M(x)=\prod_{i=1}^n(x-x_i)$,那麼咱們就是要求$\frac{M(x)}{x-x_i}$。it

取$x=x_i$的時候這個式子分子分母都爲0,那麼咱們能夠用洛必達法則,這個式子就等於$M'(x)$。那麼咱們能夠用多點求值求出每一個$\prod_{j\neq{i}}(x_i-x_j)$。

設$\frac{y_i}{\prod_{j\neq{i}}(x_i-x_j)}$爲$v_i$,如今咱們就是要求$\sum_{i=1}^nv_i\prod_{j\neq{i}}(x-x_j)$,顯然能夠分治FFT。

具體地,仍是設$L(x)=\prod_{i=1}^{n/2}(x-x_i)$,$R(x)=\prod_{i=n/2+1}^n(x-x_i)$,原式即爲$\sum_{i=1}^{n/2}v_i\prod_{j\neq{i},j\leq n/2}(x-x_j)R(x)+\sum_{i=n/2+1}^nv_i\prod_{j\neq{i},j{>}n/2}(x-x_j)L(x)$,遞歸便可。

#include <iostream>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include <string>
#include <bitset>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <algorithm>
#include <sstream>
#include <stack>
#include <iomanip>
using namespace std;
#define pb push_back
#define mp make_pair
typedef pair<int,int> pii;
typedef long long ll;
typedef double ld;
typedef vector<int> vi;
#define fi first
#define se second
#define fe first
#define FO(x) {freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);}
#define Edg int M=0,fst[SZ],vb[SZ],nxt[SZ];void ad_de(int a,int b){++M;nxt[M]=fst[a];fst[a]=M;vb[M]=b;}void adde(int a,int b){ad_de(a,b);ad_de(b,a);}
#define Edgc int M=0,fst[SZ],vb[SZ],nxt[SZ],vc[SZ];void ad_de(int a,int b,int c){++M;nxt[M]=fst[a];fst[a]=M;vb[M]=b;vc[M]=c;}void adde(int a,int b,int c){ad_de(a,b,c);ad_de(b,a,c);}
#define es(x,e) (int e=fst[x];e;e=nxt[e])
#define esb(x,e,b) (int e=fst[x],b=vb[e];e;e=nxt[e],b=vb[e])
//why use this slow code?
//because FFT is super slow
const int MOD=998244353;
#define SZ 666666
ll w[2][SZ],rev[SZ];
inline ll qp(ll a,ll b)
{
    ll ans=1;
    while(b)
    {
        if(b&1) ans=ans*a%MOD;
        a=a*a%MOD; b>>=1;
    }
    return ans;
}
int K;
inline void fftinit(int n)
{
    for(K=1;K<n;K<<=1);
    w[0][0]=w[0][K]=1;
    ll g=qp(3,(MOD-1)/K);
    for(int i=1;i<K;i++) w[0][i]=w[0][i-1]*g%MOD;
    for(int i=0;i<=K;i++) w[1][i]=w[0][K-i];
}
inline void fft(int* x,int v)
{
    for(int i=0;i<K;i++) x[i]=(x[i]%MOD+MOD)%MOD;
    for(int i=0,j=0;i<K;i++)
    {
        if(i>j) swap(x[i],x[j]);
        for(int l=K>>1;(j^=l)<l;l>>=1);
    }
    for(int i=2;i<=K;i<<=1)
        for(int l=0;l<i>>1;l++)
        {
            register int W=w[v][K/i*l],*p=x+l+(i>>1),*q=x+l,t;
            for(register int j=0;j<K;j+=i)
            {
                p[j]=(q[j]-(t=(ll)p[j]*W%MOD)<0)?(q[j]-t+MOD):(q[j]-t);
                q[j]=(q[j]+t-MOD>=0)?(q[j]+t-MOD):(q[j]+t);
            }
        }
    if(!v) return;
    ll rv=qp(K,MOD-2);
    for(int i=0;i<K;i++) x[i]=x[i]*rv%MOD;
}
struct poly
{
    vector<int> ps;
    inline int cs() {return ps.size()-1;}
    inline int& operator [] (int x) {return ps[x];} //ps.at(x)
    inline void sc(int x) {ps.resize(x+1);}
    inline void dbg()
    {
        bool fi=0;
        for(int i=cs();i>=0;i--)
        {
            ps[i]=(ps[i]%MOD+MOD)%MOD;
            if(!ps[i]) continue;
            if(ps[i]>MOD/2) ps[i]-=MOD;
            if(fi)
            {
                if(i==0) printf("%+d",ps[i]);
                else if(ps[i]==1) printf("+");
                else if(ps[i]==-1) printf("-");
                else printf("%+d",ps[i]);
            }
            else
            {
                if(i==0) printf("%d",ps[i]);
                else if(ps[i]==1);
                else if(ps[i]==-1) printf("-");
                else printf("%d",ps[i]);
            }
            if(i>1) printf("x^%d",i);
            else if(i==1) printf("x");
            fi=1;
        }
        if(!fi) printf("0");
        putchar(10);
    }
    inline void clr()
    {
        int p=cs()+1;
        while(p&&!ps[p-1]) --p;
        sc(p-1);
    }
};
namespace PolyMul{int ta[SZ],tb[SZ],tc[SZ];}
inline poly operator * (poly a,poly b)
{
    using namespace PolyMul;
    if(a.cs()<180||b.cs()<180)
    {
        poly g;
        g.sc(a.cs()+b.cs());
        int*G=&g[0],*A=&a[0],*B=&b[0];
        for(int i=0;i<=a.cs();i++)
        {
            register int*h=G+i,j=0; register ll x=A[i];
            for(;j<=b.cs();++j) h[j]=(h[j]+x*(ll)B[j])%MOD;
        }
        return g;
    }
    poly c;
    int t=a.cs()+b.cs();
    c.sc(t); fftinit(t+1);
    memset(ta,0,sizeof(int)*K);
    memset(tb,0,sizeof(int)*K);
    memset(tc,0,sizeof(int)*K);
    for(int i=a.cs();i>=0;i--) ta[i]=a[i];
    for(int i=b.cs();i>=0;i--) tb[i]=b[i];
    fft(ta,0); fft(tb,0);
    for(int i=0;i<K;i++) tc[i]=(ll)ta[i]*tb[i]%MOD;
    fft(tc,1);
    for(int i=t;i>=0;i--) c[i]=tc[i];
    c.clr();
    return c;
}
namespace PolyInv{int ay[SZ],a0[SZ],tmp[SZ];}
inline void ginv(int t)
{
    using namespace PolyInv;
    if(t==1) {a0[0]=qp(ay[0],MOD-2); return;}
    ginv((t+1)>>1); fftinit(t+t+3);
    memset(tmp,0,sizeof(int)*K);
    for(int i=t;i<K;i++) tmp[i]=a0[i]=0;
    for(int i=0;i<t;i++) tmp[i]=ay[i];
    fft(tmp,0); fft(a0,0);
    for(int i=0;i<K;i++) a0[i]=(2-(ll)tmp[i]*a0[i])%MOD*a0[i]%MOD;
    fft(a0,1);
    for(int i=t;i<K;i++) a0[i]=0;
}
inline poly inv(poly x)
{
    using namespace PolyInv;
    poly y; y.sc(x.cs());
    for(int i=x.cs();i>=0;i--) ay[i]=x[i];
    ginv(x.cs()+1);
    for(int i=x.cs();i>=0;i--) y[i]=a0[i];
    y.clr();
    return y;
}
inline poly operator + (poly a,poly b)
{
    poly w; w.sc(max(a.cs(),b.cs()));
    for(int i=a.cs();i>=0;i--) w[i]=a[i];
    for(int i=b.cs();i>=0;i--) (w[i]+=b[i])%=MOD;
    return w;
}
inline poly operator - (poly a,poly b)
{
    poly w; w.sc(max(a.cs(),b.cs()));
    for(int i=a.cs();i>=0;i--) w[i]=a[i];
    for(int i=b.cs();i>=0;i--) (w[i]-=b[i])%=MOD;
    w.clr();
    return w;
}
inline void div(poly a,poly b,poly& d,poly& r)
{
    int n=a.cs(),m=b.cs();
    if(n<m) {d.sc(0); d[0]=0; r=a; return;}
    fftinit(2*n);
    poly aa=a; reverse(aa.ps.begin(),aa.ps.end());
    poly bb=b; reverse(bb.ps.begin(),bb.ps.end());
    bb.sc(n-m); bb=inv(bb); d=aa*bb; d.sc(n-m);
    reverse(d.ps.begin(),d.ps.end()); r=a-b*d;
    r.clr();
}
inline poly operator / (poly a,poly b)
{poly d,r; div(a,b,d,r); return d;}
inline poly operator % (poly a,poly b)
{
    a.clr(); b.clr();
    if(a.cs()<b.cs()) return a;
    poly d,r; div(a,b,d,r); return r;
}
inline poly dev(poly x)
{
    for(int i=1;i<=x.cs();i++) x[i-1]=(ll)x[i]*i%MOD;
    x.sc(x.cs()-1); return x;
}
inline poly inte(poly x)
{
    x.sc(x.cs()+1);
    for(int i=x.cs();i>=1;i--) x[i]=x[i-1]; x[0]=0;
    for(int i=x.cs();i>=1;i--) x[i]=(ll)x[i]*rev[i]%MOD;
    return x;
}
inline ll qz(poly& a,ll x)
{
    ll ans=0;
    for(int i=a.cs();i>=0;i--) ans=(ans*x+a[i])%MOD;
    return ans;
}
poly vvs[SZ];
inline void gvs(int m,int* x,int id)
{
    if(m==1) {vvs[id].sc(1), vvs[id][1]=1, vvs[id][0]=-*x; return;}
    int hf=m>>1; gvs(hf,x,id*2); gvs(m-hf,x+hf,id*2+1);
    vvs[id]=vvs[id*2]*vvs[id*2+1];
}
namespace PolyGetv{int xs[SZ],anss[SZ];};
inline void gv(poly f,int m,int* x,int* ans,int id)
{
    if(f.cs()<=1000)
    {
        int c=f.cs(),*F=&f.ps[0];
        for(int i=0;i<m;i++)
        {
            register ll t=0; register int v=x[i];
            for(register int j=c;~j;--j) t=(t*v+F[j])%MOD;
            ans[i]=t;
        }
        return;
    }
    int hf=m>>1;
    gv(f%vvs[id*2],hf,x,ans,id*2);
    gv(f%vvs[id*2+1],m-hf,x+hf,ans+hf,id*2+1);
}
inline vector<int> getv(poly a,vector<int> x)
{
    using namespace PolyGetv; a.clr();
    if(!x.size()) return vector<int>();
    int m=x.size();
    for(int i=0;i<m;i++) xs[i]=x[i];
    gvs(m,xs,1);
    gv(a%vvs[1],m,xs,anss,1);
    vector<int> ans; ans.resize(m);
    for(int i=0;i<m;i++) ans[i]=anss[i];
    return ans;
}
namespace PolyIntp{int xs[SZ],vs[SZ];};
inline poly comb(int m,int*v,int id)
{
    if(m==1) {poly s; s.sc(0); s[0]=*v; return s;}
    int hf=m>>1;
    return comb(hf,v,id*2)*vvs[id*2+1]
    +comb(m-hf,v+hf,id*2+1)*vvs[id*2];
}
inline poly intp(vector<int> x,vector<int> y)
{
    using namespace PolyIntp;
    int m=x.size();
    for(int i=0;i<m;i++) xs[i]=x[i];
    gvs(m,xs,1); gv(dev(vvs[1]),m,xs,vs,1);
    for(int i=0;i<m;i++)
        vs[i]=y[i]*qp(vs[i],MOD-2)%MOD;
    return comb(m,vs,1);
}
#define BUFSIZE 500000
namespace fob {char b[BUFSIZE]={},*f=b,*g=b+BUFSIZE-2;}
#define pob (fwrite(fob::b,sizeof(char),fob::f-fob::b,stdout),fob::f=fob::b,0)
#define pc(x) (*(fob::f++)=(x),(fob::f==fob::g)?pob:0)
struct foce {~foce() {pob; fflush(stdout);}} _foce;
namespace ib {char b[100];}
inline void pint(int x)
{
    if(x==0) {pc(48); return;}
    if(x<0) {pc('-'); x=-x;}
    char *s=ib::b;
    while(x) *(++s)=x%10, x/=10;
    while(s!=ib::b) pc((*(s--))+48);
}
char ch,B[1<<20],*S=B,*T=B;
#define getc() (S==T&&(T=(S=B)+fread(B,1,1<<20,stdin),S==T)?0:*S++)
#define isd(c) (c>='0'&&c<='9')
int aa,bb;int F(){
    while(ch=getc(),!isd(ch)&&ch!='-');ch=='-'?aa=bb=0:(aa=ch-'0',bb=1);
    while(ch=getc(),isd(ch))aa=aa*10+ch-'0';return bb?aa:-aa;
}
#define gi F()
int main()
{
    rev[1]=1;
    for(int i=2;i<SZ;++i)
        rev[i]=-rev[MOD%i]*(ll)(MOD/i)%MOD;
    int n=gi;
    vector<int> xx,yy,zz;
    for(int i=0,x,y;i<n;++i)
        xx.pb(gi),yy.pb(gi);
    poly g=intp(xx,yy); int m=gi;
    for(int i=0,z;i<m;++i) zz.pb(gi);
    vector<int> vs=getv(g,zz);
    for(int i=0;i<m;++i)
        pint((vs[i]%MOD+MOD)%MOD),pc(' ');
}
相關文章
相關標籤/搜索