插入一個R visualization:編輯器
必定要確保圖形出現這個model的小圖標,表明這個R visualization的模型數據成功綁定以後才能進行下一步操做:ide
模型綁定成功後,在R script編輯器Environment標籤頁的Data下拉菜單裏能看到模型數據。ui
使用這個SAP Analytics Cloud官方教程裏提供的excel文件做爲數據源:url
https://www.sapanalytics.clou...spa
該excel內容以下:excel
excel系統導入SAP Analytics Cloud後,須要使用simple transformation,將;分號分隔的值拆分紅三列:code
逐一拆分:orm
拆分完畢以後,生成Model. 將這個url裏包含的R腳本複製粘貼到R編輯器裏:
https://www.sapanalytics.clou...blog
# Discription: # Creating a histogram of the log returns, adding the kernel density of the log returns # and the normal density as reference distribution # # Requirements: # ggplot requires a data frame # # Output: # Histogram Plot # library(ggplot2) Simulated_data <- data.frame(Simulated_data) histgg <- ggplot(data = Simulated_data, aes(logreturns)) histgg + geom_histogram(aes(y = ..density..),fill = "lightblue",color = "black", alpha = 0.8, position = "identity") + geom_density(aes(color = "Kernel Density"), size = 1) + stat_function(aes(color = "Normal Distribution"), fun = dnorm, args = list(mean = mean(Simulated_data$logreturns), sd = sd(Simulated_data$logreturns)), size = 1) + ggtitle("Histogram") + theme(panel.grid = element_line(linetype = "dashed", color = "lightgrey"), panel.background = element_rect(fill = "white"), panel.border = element_rect(colour = "black", fill=NA), plot.title = element_text(hjust = 0.5)) + scale_colour_manual("Density", values = c("red", "darkgreen")) + xlab(" ")+ ylab("Frequency")
點擊Execute按鈕,就能夠看到R腳本繪製出來的圖形了:教程
要獲取更多Jerry的原創文章,請關注公衆號"汪子熙":