Inception V4的網絡結構如下:
Inception-ResNet-v1的總體網絡結構如下所示
從圖中可以看出,輸入部分與V1到V3的輸入部分有較大的差別,這樣設計的目的爲了:使用並行結構、不對稱卷積核結構,可以在保證信息損失足夠小的情況下,降低計算量。結構中1*1的卷積核也用來降維,並且也增加了非線性。
Inception-ResNet-v2與Inception-ResNet-v1的結構類似,除了stem部分。Inception-ResNet-v2的stem與V4的結構類似,Inception-ResNet-v2的輸出chnnel要高。Reduction-A相同,Inception-ResNet-A、Inception-ResNet-B、Inception-ResNet-C和Reduction-B的結構與v1的類似,只不過輸出的channel數量更多。
Inception-ResNet-v1的Stem與V3的結構是一致的。
接下來主要說一下Inception-ResNet-v1的網絡結構及代碼的實現部分。
stem結構與V3的Stem結構類似。
對應的代碼爲
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],stride=1, padding='SAME'):
# 149 x 149 x 32
net = slim.conv2d(inputs, 32, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3')
end_points['Conv2d_1a_3x3'] = net # 147 x 147 x 32
net = slim.conv2d(net, 32, 3, padding='VALID',scope='Conv2d_2a_3x3')
end_points['Conv2d_2a_3x3'] = net # 147 x 147 x 64
net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')end_points['Conv2d_2b_3x3'] = net # 73 x 73 x 64
net = slim.max_pool2d(net, 3, stride=2, padding='VALID', scope='MaxPool_3a_3x3')
end_points['MaxPool_3a_3x3'] = net # 73 x 73 x 80
net = slim.conv2d(net, 80, 1, padding='VALID',scope='Conv2d_3b_1x1')
end_points['Conv2d_3b_1x1'] = net # 71 x 71 x 192
net = slim.conv2d(net, 192, 3, padding='VALID',scope='Conv2d_4a_3x3')
end_points['Conv2d_4a_3x3'] = net # 35 x 35 x 256
net = slim.conv2d(net, 256, 3, stride=2, padding='VALID',scope='Conv2d_4b_3x3')
end_points['Conv2d_4b_3x3'] = net
Inception-resnet-A模塊是要重複5次的,網絡結構爲:
對應的代碼表示爲:
# Inception-Renset-A
"""Builds the 35x35 resnet block."""
with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
# 35 × 35 × 32
tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
# 35 × 35 × 32
tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
# 35 × 35 × 32
tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
# 35 × 35 × 32
tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
# 35 × 35 × 32
tower_conv2_1 = slim.conv2d(tower_conv2_0, 32, 3, scope='Conv2d_0b_3x3')
# 35 × 35 × 32
tower_conv2_2 = slim.conv2d(tower_conv2_1, 32, 3, scope='Conv2d_0c_3x3')
# 35 × 35 × 96
mixed = tf.concat([tower_conv, tower_conv1_1, tower_conv2_2], 3)
# 35 × 35 × 256
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,activation_fn=None, scope='Conv2d_1x1')
# 使用殘差網絡scale = 0.17
net += scale * up
if activation_fn:
net = activation_fn(net)
return net
# 5 x Inception-resnet-A
net = slim.repeat(net, 5, block35, scale=0.17)
end_points['Mixed_5a'] = net
Reduction-A中含有4個參數k、l、 m、 n,它們對應的值分別爲:192, 192, 256, 384,在該層網絡結構,輸入爲35×35×256,輸出爲17×17×896.
def reduction_a(net, k, l, m, n):
# 192, 192, 256, 384
with tf.variable_scope('Branch_0'):
# 17×17×384
tower_conv = slim.conv2d(net, n, 3, stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
# 35×35×192
tower_conv1_0 = slim.conv2d(net, k, 1, scope='Conv2d_0a_1x1')
# 35×35×192
tower_conv1_0 = slim.conv2d(net, k, 1, scope='Conv2d_0a_1x1')
# 35×35×192
tower_conv1_1 = slim.conv2d(tower_conv1_0, l, 3,
scope='Conv2d_0b_3x3')
# 17×17×256
tower_conv1_2 = slim.conv2d(tower_conv1_1, m, 3,
tower_conv1_0 = slim.conv2d(net, k, 1, scope='Conv2d_0a_1x1')
# 35×35×192
tower_conv1_1 = slim.conv2d(tower_conv1_0, l, 3,
scope='Conv2d_0b_3x3')
# 17×17×256
tower_conv1_2 = slim.conv2d(tower_conv1_1, m, 3,
, scope='Conv2d_0a_1x1')