(原創)(四)機器學習筆記之Scikit Learn的Logistic迴歸初探

 

目錄html

1、Scikit Learn中有關logistics迴歸函數的介紹... 2python

1. 交叉驗證... 2web

2. 使用搜索進行正則化的 Logistic Regression參數調優... 3算法

3. LogisticRegressionCV實現正則化的 Logistic Regression 參數調優... 6express

2、應用舉例... 10數組

1.    讀取數據... 10app

2.    看各種樣本分佈是否均衡... 10less

3.    特徵編碼... 10dom

4.    數據預處理... 10ide

5.    模型訓練... 10

5.1 交叉驗證進行 Logistic Regression 參數調優... 10

5.2 使用搜索進行正則化的 Logistic Regression參數調優... 10

5.3 使用LogisticRegressionCV進行正則化的 Logistic Regression 參數調優


...
10

 

1、Scikit Learn中有關logistics迴歸函數的介紹

1. 交叉驗證

交叉驗證用於評估模型性能和進行參數調優(模型選擇)。分類任務中交叉驗證缺省是採用StratifiedKFold

 

sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs')

 

Parameters:

estimator : estimator object implementing ‘fit’

The object to use to fit the data.

X : array-like

The data to fit. Can be, for example a list, or an array at least 2d.

y : array-like, optional, default: None

The target variable to try to predict in the case of supervised learning.

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with signature scorer(estimator, X, y).

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

  • None, to use the default 3-fold cross-validation,
  • integer, to specify the number of folds.
  • An object to be used as a cross-validation generator.
  • An iterable yielding train/test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass, StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

n_jobs : integer, optional

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.

verbose : integer, optional

The verbosity level.

fit_params : dict, optional

Parameters to pass to the fit method of the estimator.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be:

·         None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs

·         An int, giving the exact number of total jobs that are spawned

·         A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

Returns:

scores : array of float, shape=(len(list(cv)),)

Array of scores of the estimator for each run of the cross validation.

 

 

2. 使用搜索進行正則化的 Logistic Regression參數調優

 

sklearn.grid_search.GridSearchCV(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise')

 

Parameters:

estimator : estimator object.

A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a score function, or scoring must be passed.

param_grid : dict or list of dictionaries

Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings.

scoring : string, callable or None, default=None

A string (see model evaluation documentation) or a scorer callable object / function with signature scorer(estimator, X, y). If None, the score method of the estimator is used.

fit_params : dict, optional

Parameters to pass to the fit method.

n_jobs : int, default=1

Number of jobs to run in parallel.

Changed in version 0.17: Upgraded to joblib 0.9.3.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be:

·         None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs

·         An int, giving the exact number of total jobs that are spawned

·         A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

iid : boolean, default=True

If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

  • None, to use the default 3-fold cross-validation,
  • integer, to specify the number of folds.
  • An object to be used as a cross-validation generator.
  • An iterable yielding train/test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass, sklearn.model_selection.StratifiedKFold is used. In all other cases, sklearn.model_selection.KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

refit : boolean, default=True

Refit the best estimator with the entire dataset. If 「False」, it is impossible to make predictions using this GridSearchCV instance after fitting.

verbose : integer

Controls the verbosity: the higher, the more messages.

error_score : ‘raise’ (default) or numeric

Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error.

Attributes:

grid_scores_ : list of named tuples

Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes:

·         parameters, a dict of parameter settings

·         mean_validation_score, the mean score over the cross-validation folds

·         cv_validation_scores, the list of scores for each fold

best_estimator_ : estimator

Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False.

best_score_ : float

Score of best_estimator on the left out data.

best_params_ : dict

Parameter setting that gave the best results on the hold out data.

scorer_ : function

Scorer function used on the held out data to choose the best parameters for the model.

 

 

訓練:

fit(X, y=None)

Run fit with all sets of parameters.

Parameters:

X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples is the number of samples and n_features is the number of features.

y : array-like, shape = [n_samples] or [n_samples, n_output], optional

Target relative to X for classification or regression; None for unsupervised learning.

 

 

3. LogisticRegressionCV實現正則化的 Logistic Regression 參數調優

 

sklearn.linear_model.LogisticRegressionCV(Cs=10, fit_intercept=True, cv=None, dual=False, penalty='l2', scoring=None, solver='lbfgs', tol=0.0001, max_iter=100, class_weight=None, n_jobs=1, verbose=0, refit=True, intercept_scaling=1.0, multi_class='ovr', random_state=None)

 

Parameters:

Cs : list of floats | int

Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. Like in support vector machines, smaller values specify stronger regularization.

fit_intercept : bool, default: True

Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function.

class_weight : dict or ‘balanced’, optional

Weights associated with classes in the form {class_label: weight}. If not given, all classes are supposed to have weight one.

The 「balanced」 mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)).

Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified.

New in version 0.17: class_weight == ‘balanced’

cv : integer or cross-validation generator

The default cross-validation generator used is Stratified K-Folds. If an integer is provided, then it is the number of folds used. See the module sklearn.model_selection module for the list of possible cross-validation objects.

penalty : str, ‘l1’ or ‘l2’

Used to specify the norm used in the penalization. The ‘newton-cg’, ‘sag’ and ‘lbfgs’ solvers support only l2 penalties.

dual : bool

Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features.

scoring : callabale

Scoring function to use as cross-validation criteria. For a list of scoring functions that can be used, look at sklearn.metrics. The default scoring option used is accuracy_score.

solver : {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}

Algorithm to use in the optimization problem.

  • For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ is

faster for large ones.

  • For multiclass problems, only ‘newton-cg’, ‘sag’ and ‘lbfgs’ handle

multinomial loss; ‘liblinear’ is limited to one-versus-rest schemes.

  • ‘newton-cg’, ‘lbfgs’ and ‘sag’ only handle L2 penalty.
  • ‘liblinear’ might be slower in LogisticRegressionCV because it does

not handle warm-starting.

Note that ‘sag’ fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing.

New in version 0.17: Stochastic Average Gradient descent solver.

tol : float, optional

Tolerance for stopping criteria.

max_iter : int, optional

Maximum number of iterations of the optimization algorithm.

n_jobs : int, optional

Number of CPU cores used during the cross-validation loop. If given a value of -1, all cores are used.

verbose : int

For the ‘liblinear’, ‘sag’ and ‘lbfgs’ solvers set verbose to any positive number for verbosity.

refit : bool

If set to True, the scores are averaged across all folds, and the coefs and the C that corresponds to the best score is taken, and a final refit is done using these parameters. Otherwise the coefs, intercepts and C that correspond to the best scores across folds are averaged.

multi_class : str, {‘ovr’, ‘multinomial’}

Multiclass option can be either ‘ovr’ or ‘multinomial’. If the option chosen is ‘ovr’, then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the ‘newton-cg’, ‘sag’ and ‘lbfgs’ solver.

New in version 0.18: Stochastic Average Gradient descent solver for ‘multinomial’ case.

intercept_scaling : float, default 1.

Useful only when the solver ‘liblinear’ is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a 「synthetic」 feature with constant value equal to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic_feature_weight.

Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the data.

Attributes:

coef_ : array, shape (1, n_features) or (n_classes, n_features)

Coefficient of the features in the decision function.

coef_ is of shape (1, n_features) when the given problem is binary. coef_ is readonly property derived from raw_coef_ that follows the internal memory layout of liblinear.

intercept_ : array, shape (1,) or (n_classes,)

Intercept (a.k.a. bias) added to the decision function. It is available only when parameter intercept is set to True and is of shape(1,) when the problem is binary.

Cs_ : array

Array of C i.e. inverse of regularization parameter values used for cross-validation.

coefs_paths_ : array, shape (n_folds, len(Cs_), n_features) or (n_folds, len(Cs_), n_features + 1)

dict with classes as the keys, and the path of coefficients obtained during cross-validating across each fold and then across each Cs after doing an OvR for the corresponding class as values. If the ‘multi_class’ option is set to ‘multinomial’, then the coefs_paths are the coefficients corresponding to each class. Each dict value has shape (n_folds, len(Cs_), n_features) or (n_folds, len(Cs_), n_features + 1) depending on whether the intercept is fit or not.

scores_ : dict

dict with classes as the keys, and the values as the grid of scores obtained during cross-validating each fold, after doing an OvR for the corresponding class. If the ‘multi_class’ option given is ‘multinomial’ then the same scores are repeated across all classes, since this is the multinomial class. Each dict value has shape (n_folds, len(Cs))

C_ : array, shape (n_classes,) or (n_classes - 1,)

Array of C that maps to the best scores across every class. If refit is set to False, then for each class, the best C is the average of the C’s that correspond to the best scores for each fold.

n_iter_ : array, shape (n_classes, n_folds, n_cs) or (1, n_folds, n_cs)

Actual number of iterations for all classes, folds and Cs. In the binary or multinomial cases, the first dimension is equal to 1.

 

2、應用舉例

Kaggle 2015年舉辦的Otto Group Product Classification Challenge競賽數據爲例。

1.   讀取數據

# 首先 import 必要的模塊 import pandas as pd import numpy as np from sklearn.model_selection import GridSearchCV #評價指標爲logloss from sklearn.metrics import log_loss from matplotlib import pyplot import seaborn as sns %matplotlib inline

 

# 讀取數據
dpath = './data/'
train = pd.read_csv(dpath +"Otto_train.csv")
train.head()

 

2.   看各種樣本分佈是否均衡

# Target 分佈,看看各種樣本分佈是否均衡
sns.countplot(train.target);
pyplot.xlabel('target');
pyplot.ylabel('Number of occurrences');
 
 

各種樣本不均衡。交叉驗證對分類任務缺省的是採用StratifiedKFold,在每折採樣時根據各種樣本按比例採樣

3.   特徵編碼

# 將類別字符串變成數字
y_train = train['target']   
y_train = y_train.map(lambda s: s[6:])      # 對於s使用s[6:]來代替
y_train = y_train.map(lambda s: int(s)-1)   # 對於s使用int(s)-1來代替

train = train.drop(["id", "target"], axis=1) # 去掉 "id", "target"這2列
X_train = np.array(train)[0:2000,:] # 轉爲數組

 

4.   數據預處理

# 數據標準化
from sklearn.preprocessing import StandardScaler

# 初始化特徵的標準化器
ss_X = StandardScaler()

# 分別對訓練數據的特徵進行標準化處理
X_train = ss_X.fit_transform(X_train)

 

5.   模型訓練

5.1 交叉驗證進行 Logistic Regression 參數調優

from sklearn.linear_model import LogisticRegression
lr= LogisticRegression()
# 交叉驗證用於評估模型性能和進行參數調優(模型選擇)
#分類任務中交叉驗證缺省是採用StratifiedKFold
from sklearn.cross_validation import cross_val_score
# cross_val_score(estimator, X, y=None, scoring=None, cv=None, ...)
# estimator: 模型,X:特徵,y:標籤,scoring:分數規則,cv:k折交叉驗證
scores = cross_val_score(lr, X_train, y_train, cv=5, scoring='accuracy')
print 'accuracy of each fold is: '
print(scores)
print'cv accuracy is:', scores.mean()
accuracy of each fold is: 
[ 0.97755611  0.9925      0.9775      0.9875      0.98746867]
cv accuracy is: 0.984504956281
 

 

5.2 使用搜索進行正則化的 Logistic Regression參數調優

from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression

#須要調優的參數
# 請嘗試將L1正則和L2正則分開,並配合合適的優化求解算法(slover)
#tuned_parameters = {'penalty':['l1','l2'],
#                   'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]
#                   }
penaltys = ['l1','l2']
Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
tuned_parameters = dict(penalty = penaltys, C = Cs)

lr_penalty= LogisticRegression()
# GridSearchCV(estimator, param_grid, ... cv=None, ...)
# estimator: 模型, param_grid:字典類型的參數, cv:k折交叉驗證
grid= GridSearchCV(lr_penalty, tuned_parameters, cv=5)
grid.fit(X_train,y_train) # 網格搜索訓練

 

grid.cv_results_ #訓練的結果
{'mean_fit_time': array([ 0.00779996,  0.01719995,  0.01200004,  0.02780004,  0.01939998,
         0.03739996,  0.048     ,  0.05899997,  0.21480007,  0.12020001,
         0.4348001 ,  0.13859997,  0.39040003,  0.15320001]),
 'mean_score_time': array([ 0.00039997,  0.00040002,  0.00059996,  0.00059996,  0.00059996,
         0.0006    ,  0.00039997,  0.00019999,  0.00040002,  0.00040002,
         0.0006    ,  0.0006    ,  0.00079994,  0.00099993]),
 'mean_test_score': array([ 0.9645,  0.976 ,  0.9645,  0.9805,  0.9785,  0.9805,  0.985 ,
         0.9845,  0.983 ,  0.9805,  0.98  ,  0.977 ,  0.9775,  0.974 ]),
 'mean_train_score': array([ 0.96450007,  0.98012508,  0.96512492,  0.98399976,  0.98137492,
         0.987875  ,  0.99462492,  0.9945    ,  0.999625  ,  0.99824992,
         1.        ,  1.        ,  1.        ,  1.        ]),
 'param_C': masked_array(data = [0.001 0.001 0.01 0.01 0.1 0.1 1 1 10 10 100 100 1000 1000],
              mask = [False False False False False False False False False False False False
  False False],
        fill_value = ?),
 'param_penalty': masked_array(data = ['l1' 'l2' 'l1' 'l2' 'l1' 'l2' 'l1' 'l2' 'l1' 'l2' 'l1' 'l2' 'l1' 'l2'],
              mask = [False False False False False False False False False False False False
  False False],
        fill_value = ?),
 'params': ({'C': 0.001, 'penalty': 'l1'},
  {'C': 0.001, 'penalty': 'l2'},
  {'C': 0.01, 'penalty': 'l1'},
  {'C': 0.01, 'penalty': 'l2'},
  {'C': 0.1, 'penalty': 'l1'},
  {'C': 0.1, 'penalty': 'l2'},
  {'C': 1, 'penalty': 'l1'},
  {'C': 1, 'penalty': 'l2'},
  {'C': 10, 'penalty': 'l1'},
  {'C': 10, 'penalty': 'l2'},
  {'C': 100, 'penalty': 'l1'},
  {'C': 100, 'penalty': 'l2'},
  {'C': 1000, 'penalty': 'l1'},
  {'C': 1000, 'penalty': 'l2'}),
 'rank_test_score': array([13, 11, 13,  4,  8,  4,  1,  2,  3,  4,  7, 10,  9, 12]),
 'split0_test_score': array([ 0.96259352,  0.96758105,  0.96259352,  0.97506234,  0.97256858,
         0.97506234,  0.97755611,  0.97755611,  0.97755611,  0.98004988,
         0.97007481,  0.97256858,  0.97506234,  0.97506234]),
 'split0_train_score': array([ 0.96497811,  0.98186366,  0.9656035 ,  0.98373984,  0.98186366,
         0.98811757,  0.99437148,  0.99437148,  0.99937461,  0.99749844,
         1.        ,  1.        ,  1.        ,  1.        ]),
 'split1_test_score': array([ 0.965 ,  0.9825,  0.965 ,  0.9875,  0.9825,  0.9875,  0.99  ,
         0.9925,  0.9825,  0.9825,  0.9775,  0.9825,  0.9725,  0.9775]),
 'split1_train_score': array([ 0.964375,  0.97625 ,  0.965   ,  0.983125,  0.979375,  0.986875,
         0.994375,  0.994375,  0.999375,  0.996875,  1.      ,  1.      ,
         1.      ,  1.      ]),
 'split2_test_score': array([ 0.965 ,  0.9825,  0.965 ,  0.9825,  0.9825,  0.9825,  0.9825,
         0.9775,  0.9775,  0.97  ,  0.9775,  0.9675,  0.975 ,  0.965 ]),
 'split2_train_score': array([ 0.964375,  0.980625,  0.964375,  0.98375 ,  0.981875,  0.98875 ,
         0.99625 ,  0.995625,  1.      ,  0.999375,  1.      ,  1.      ,
         1.      ,  1.      ]),
 'split3_test_score': array([ 0.965 ,  0.9775,  0.965 ,  0.9825,  0.985 ,  0.9825,  0.99  ,
         0.9875,  0.9875,  0.985 ,  0.985 ,  0.98  ,  0.985 ,  0.975 ]),
 'split3_train_score': array([ 0.964375,  0.980625,  0.964375,  0.98375 ,  0.98125 ,  0.9875  ,
         0.993125,  0.99375 ,  1.      ,  0.999375,  1.      ,  1.      ,
         1.      ,  1.      ]),
 'split4_test_score': array([ 0.96491228,  0.96992481,  0.96491228,  0.97493734,  0.96992481,
         0.97493734,  0.98496241,  0.98746867,  0.98997494,  0.98496241,
         0.98997494,  0.98245614,  0.97994987,  0.97744361]),
 'split4_train_score': array([ 0.96439725,  0.98126171,  0.96627108,  0.98563398,  0.98251093,
         0.98813242,  0.99500312,  0.99437851,  0.99937539,  0.99812617,
         1.        ,  1.        ,  1.        ,  1.        ]),
 'std_fit_time': array([ 0.0011662 ,  0.00116623,  0.00063249,  0.00305936,  0.00185475,
         0.00205906,  0.00460443,  0.0018974 ,  0.04810566,  0.01215555,
         0.17968574,  0.01993598,  0.10196788,  0.02121689]),
 'std_score_time': array([ 0.00048986,  0.00048992,  0.00048986,  0.00048986,  0.00048986,
         0.0004899 ,  0.00048986,  0.00039997,  0.00048992,  0.00048992,
         0.0004899 ,  0.0004899 ,  0.00039997,  0.        ]),
 'std_test_score': array([ 0.00095533,  0.00623894,  0.00095533,  0.00484784,  0.00604764,
         0.00484784,  0.00472867,  0.00598547,  0.00507914,  0.00555997,
         0.00686303,  0.00598133,  0.00445968,  0.00463055]),
 'std_train_score': array([ 0.00023917,  0.00199152,  0.00073254,  0.00085184,  0.00107655,
         0.00063739,  0.00101591,  0.00061238,  0.00030619,  0.00100021,
         0.        ,  0.        ,  0.        ,  0.        ])}
 
# examine the best model
print(grid.best_score_)  # 最好的分數
print(grid.best_params_) # 最好的參數
0.754775526035
{'penalty': 'l1', 'C': 100}
 

若是最佳值在候選參數的邊緣,最好再嘗試更大的候選參數或更小的候選參數,直到找到拐點。

 

5.3 使用LogisticRegressionCV進行正則化的 Logistic Regression 參數調優

from sklearn.linear_model import LogisticRegressionCV

Cs = [1, 10,100,1000]

# 大量樣本(7W)、高維度(93),L1正則 --> 可選用saga優化求解器(0.19版本新功能)
lr_cv = LogisticRegressionCV(Cs=Cs, cv = 5, penalty='l1', solver='liblinear', multi_class='ovr')
lr_cv.fit(X_train, y_train)    
LogisticRegressionCV(Cs=[1, 10, 100, 1000], class_weight=None, cv=5,
           dual=False, fit_intercept=True, intercept_scaling=1.0,
           max_iter=100, multi_class='ovr', n_jobs=1, penalty='l1',
           random_state=None, refit=True, scoring=None, solver='liblinear',
           tol=0.0001, verbose=0)
 
lr_cv.scores_ # 網格中每次迭代的分數
{1: array([[ 0.97755611,  0.97755611,  0.97007481,  0.97506234],
        [ 0.99      ,  0.9825    ,  0.9775    ,  0.975     ],
        [ 0.9825    ,  0.9775    ,  0.9775    ,  0.975     ],
        [ 0.99      ,  0.9875    ,  0.985     ,  0.985     ],
        [ 0.98496241,  0.98997494,  0.98997494,  0.97994987]])}
相關文章
相關標籤/搜索