1.使用樸素貝葉斯模型對iris數據集進行花分類app
嘗試使用3種不一樣類型的樸素貝葉斯:dom
高斯分佈型測試
from sklearn.datasets import load_iris iris=load_iris() from sklearn.naive_bayes import GaussianNB gnb=GaussianNB() pred=gnb.fit(iris.data,iris.target) y_pred=pred.predict(iris.data) print(iris.data.shape[0],(iris.target!=y_pred).sum())
多項式型spa
from sklearn import datasets iris=datasets.load_iris() from sklearn.naive_bayes import MultinomialNB gnb=MultinomialNB() pred=gnb.fit(iris.data,iris.target) y_pred=pred.predict(iris.data) print(iris.data.shape[0],(iris.target!=y_pred).sum())
伯努利型3d
from sklearn import datasets iris=datasets.load_iris() from sklearn.naive_bayes import BernoulliNB gnb=BernoulliNB() pred=gnb.fit(iris.data,iris.target) y_pred=pred.predict(iris.data) print(iris.data.shape[0],(iris.target!=y_pred).sum())
運行結果:code
2.使用sklearn.model_selection.cross_val_score(),對模型進行驗證。blog
from sklearn.naive_bayes import GaussianNB #高斯 from sklearn.model_selection import cross_val_score gnb=GaussianNB() scores=cross_val_score(gnb,iris.data,iris.target,cv=10) print("Accuracy:%.3f"%scores.mean()) from sklearn.naive_bayes import BernoulliNB #伯努利 from sklearn.model_selection import cross_val_score gnb=BernoulliNB() scores=cross_val_score(gnb,iris.data,iris.target,cv=10) print("Accuracy:%.3f"%scores.mean()) from sklearn.naive_bayes import MultinomialNB #多項式 from sklearn.model_selection import cross_val_score gnb=MultinomialNB() scores=cross_val_score(gnb,iris.data,iris.target,cv=10) print("Accuracy:%.3f"%scores.mean())
運行結果:ip
3. 垃圾郵件分類utf-8
數據準備:get
• 用csv讀取郵件數據,分解出郵件類別及郵件內容。
import csv file_path = r"C:/Users/Administrator/Desktop/SMSSpamCollectionjsn.txt" sms = open(file_path,'r',encoding = 'utf-8') sms_data = [] sms_label = [] csv_reader = csv.reader(sms,delimiter='\t') for line in csv_reader: sms_label.append(line[0]) sms_data.append(line[1]) sms.close() sms_data sms_label
運行結果:
• 對郵件內容進行預處理:去掉長度小於3的詞,去掉沒有語義的詞等
嘗試使用nltk庫:
pip install nltk
import nltk
nltk.download
不成功:就使用詞頻統計的處理方法
import csv
file_path=r"C:/Users/E5-572/Desktop/SMSSpamCollectionjsn.txt"
sms=open(file_path,'r',encoding='utf-8')
sms_data=[]
sms_label=[]
csv_reader=csv.reader(sms,delimiter='\t')
for line in csv_reader:
sms_label.append(line[0])
sms_data.append(line[1])
sms.close()
print("郵件總數:",len(sms_label))
print(sms_label)
print(sms_data)
訓練集和測試集數據劃分
• from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size = 0.3,random_state=0,stratify=sms_label) x_train x_test