A:由於刪除是不計入操做次數的,因此轉化一下就是求最長上升子序列,簡單dp。node
設dp[i]表示前i個字符能湊成上升子序列的最大長度,dp[i] = max(dp[j]+1, dp[i]) 【j < i && s[j] < s[i]】ios
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define rep(i,a,b) for(int i = a;i <= b;++ i) 4 #define per(i,a,b) for(int i = a;i >= b;-- i) 5 #define mem(a,b) memset((a),(b),sizeof((a))) 6 #define FIN freopen("in.txt","r",stdin) 7 #define IO ios_base::sync_with_stdio(0),cin.tie(0) 8 #define pb push_back 9 typedef long long LL; 10 typedef pair<int, LL> PIR; 11 const int N = 1e6+5; 12 13 string s; 14 int dp[105]; 15 16 int main() 17 { 18 //FIN; 19 cin >> s; 20 int len = s.size(), maxn = 0; 21 rep(i, 1, len){ 22 dp[i] = 1; 23 rep(j, 1, i-1){ 24 if(s[j-1] < s[i-1]) dp[i] = max(dp[j]+1, dp[i]); 25 } 26 maxn = max(maxn, dp[i]); 27 } 28 cout << 26-maxn << endl; 29 return 0; 30 }
B:能夠看出題目其實就是讓你求有多少對啞鈴片,每一片啞鈴只能用一次且這一對重量相同。c++
最多隻可能有14個啞鈴片,所以咱們能夠用二進制進行枚舉,假設二進制是 101011(高->低),那麼表示1,2,4,6號啞鈴片被選中了;數組
這樣的話最多 2^14種重量,接下來咱們只須要判斷一下相同重量的方案是否是知足每種啞鈴片只用了一次。ide
eg: 假設 1001和1100構成的重量是相同的,可是它們都選擇了4號啞鈴片,因此這種狀況是不知足題意的,只有 1001和 0110這種狀況知足;spa
可見判斷標準就是看兩個方案的二進制數的按位與操做的結果是否是0,是的話表示知足,不是的話表示有重複使用,則不知足。3d
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define rep(i,a,b) for(int i = a;i <= b;++ i) 4 #define per(i,a,b) for(int i = a;i >= b;-- i) 5 #define mem(a,b) memset((a),(b),sizeof((a))) 6 #define FIN freopen("in.txt","r",stdin) 7 #define IO ios_base::sync_with_stdio(0),cin.tie(0) 8 #define pb push_back 9 typedef long long LL; 10 typedef pair<int, LL> PIR; 11 const int N = (1<<16); 12 13 int n, m; 14 LL a[20], b[20]; 15 vector <LL> ans, ANS; 16 map <LL, bool> vis, VIS; 17 struct Node{ 18 int bt; 19 LL val; 20 bool operator < (const Node &r) const { return val < r.val; } 21 }node[N]; 22 23 bool judge(int i, int j){ 24 int a = node[i].bt, b = node[j].bt; 25 if(a&b) return false; 26 return true; 27 } 28 int main() 29 {IO; 30 //FIN; 31 cin >> n >> m; 32 rep(i, 1, n) cin >> a[i]; 33 rep(i, 1, m) cin >> b[i]; 34 35 rep(i, 0, ((1<<m)-1)){ 36 int bit = i, p = 1; 37 LL res = 0; 38 while(bit){ 39 if(bit&1) res += b[p]; 40 p++; bit >>= 1; 41 } 42 node[i].val = res; 43 node[i].bt = i; 44 } 45 sort(node, node+(1<<m)); 46 int i = 0; 47 while(i < (1<<m)){ 48 int j = i+1; 49 if(vis[node[i].val]) { i++; continue; } 50 while(j < (1<<m)){ 51 if(node[i].val != node[j].val) break; 52 if(judge(i, j)){ 53 if(!vis[node[i].val]) ans.pb(node[i].val); 54 vis[node[i].val] = true; 55 } 56 j++; 57 } 58 i++; 59 } 60 //rep(i, 0, (int)ans.size()-1) cout << ans[i] << " "; 61 rep(i, 1, n){ 62 if(!VIS[a[i]]) ANS.pb(a[i]); 63 VIS[a[i]] = true; 64 rep(j, 0, (int)ans.size()-1){ 65 LL res = a[i]+ans[j]*2; 66 if(!VIS[res]) ANS.pb(res); 67 VIS[res] = true; 68 } 69 } 70 sort(ANS.begin(), ANS.end()); 71 rep(i, 0, (int)ANS.size()-1) cout << ANS[i] << endl; 72 return 0; 73 }
C:貌似還沒補。。。。。。code
D:這是一道貪心題,咱們能夠從左往右貪心。假設當前位置是pos,那麼咱們能夠看一下pos往右的長度爲r的區間內有幾個攝像機,blog
若是大於2,那麼不須要放,不然須要放1個或2個。咱們爲了使攝像機充分利用,那麼咱們儘量把攝像機給右邊放,也就是說,隊列
咱們從 pos+r-1 的位置往左掃,碰到沒有攝像機的位置給它放就好了,知道 [pos, pos+r-1]這個區間的攝像機很多於2個就好。
快速判斷 [pos, pos+r-1]的攝像機個數,有的位置標記1,沒有的標記0,那麼區間求和就是攝像機個數;
快速求區間和操做能夠看看樹狀數組,固然能夠用前綴和以及特殊的處理也能夠搞定這個題。
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define rep(i,a,b) for(int i = a;i <= b;++ i) 4 #define per(i,a,b) for(int i = a;i >= b;-- i) 5 #define mem(a,b) memset((a),(b),sizeof((a))) 6 #define FIN freopen("in.txt","r",stdin) 7 #define IO ios_base::sync_with_stdio(0),cin.tie(0) 8 #define pb push_back 9 typedef long long LL; 10 typedef pair<int, LL> PIR; 11 const int N = 1e5+5; 12 13 LL n, k, r, x, c[N]; 14 bool vis[N]; 15 16 int lowbit(int x) { return x&-x; } 17 void add(int id, int p){ 18 while(id <= n){ 19 c[id] += p; 20 id += lowbit(id); 21 } 22 } 23 LL sum(int id){ 24 LL ans = 0; 25 while(id >= 1){ 26 ans += c[id]; 27 id -= lowbit(id); 28 } 29 return ans; 30 } 31 int main() 32 {IO; 33 //FIN; 34 cin >> n >> k >> r; 35 rep(i, 1, k) { cin >> x; vis[x] = true; add(x, 1); } 36 LL ans = 0; 37 rep(i, 1, n-r+1){ 38 LL res = sum(i+r-1)-sum(i-1); 39 if(res < 2){ 40 per(j, i+r-1, i){ 41 if(res >= 2) break; 42 if(!vis[j]){ 43 add(j, 1); 44 vis[j] = true; 45 ans++; 46 res++; 47 } 48 } 49 } 50 } 51 cout << ans << endl; 52 return 0; 53 }
E:按照題意,咱們每次是從長度爲k的序列中找罰時最小的來處理的,那麼只須要用個優先隊列,每次把最小的pop出來,而後按照題意進行模擬就好了。
關於優先隊列的用法請出門右拐百度 "STL 優先隊列"
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define rep(i,a,b) for(int i = a;i <= b;++ i) 4 #define per(i,a,b) for(int i = a;i >= b;-- i) 5 #define mem(a,b) memset((a),(b),sizeof((a))) 6 #define FIN freopen("in.txt","r",stdin) 7 #define IO ios_base::sync_with_stdio(0),cin.tie(0) 8 #define pb push_back 9 typedef long long LL; 10 typedef pair<int, LL> PIR; 11 const int N = 1e6+5; 12 13 int n, k, a[305]; 14 priority_queue<int, vector<int>, greater<int> > Q; 15 16 int main() 17 { 18 //FIN; 19 cin >> n >> k; 20 rep(i, 1, n) cin >> a[i]; 21 LL ans = 0, pre = 0, tol = 0; 22 rep(i, 1, k) Q.push(a[i]); 23 24 int id = k+1; 25 while(!Q.empty()){ 26 ans = pre+Q.top(); Q.pop(); 27 pre = ans; 28 tol += ans; 29 if(id <= n) { Q.push(a[id]); id++; } 30 } 31 cout << tol << endl; 32 return 0; 33 }
F:簽到題,判斷a + b = c,處理讀入能夠簡化操做。
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define rep(i,a,b) for(int i = a;i <= b;++ i) 4 #define per(i,a,b) for(int i = a;i >= b;-- i) 5 #define mem(a,b) memset((a),(b),sizeof((a))) 6 #define FIN freopen("in.txt","r",stdin) 7 #define IO ios_base::sync_with_stdio(0),cin.tie(0) 8 #define pb push_back 9 typedef long long LL; 10 typedef pair<int, LL> PIR; 11 const int N = 1e6+5; 12 13 int a, b, c; 14 15 int main() 16 { 17 scanf("%d + %d = %d", &a, &b, &c); 18 if(a+b == c) printf("YES\n"); 19 else printf("NO\n"); 20 return 0; 21 }
G:蘋果下落,按照題意模擬就好了。把每一個蘋果往下掉,直到不能掉爲止。注意有坑點,有可能上下是多個蘋果相連,
那麼若是判斷條件不合理的話,最後結果只是最底下的一層掉落了。所以咱們能夠從下往上模擬就不會出現這個問題了。
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define rep(i,a,b) for(int i = a;i <= b;++ i) 4 #define per(i,a,b) for(int i = a;i >= b;-- i) 5 #define mem(a,b) memset((a),(b),sizeof((a))) 6 #define FIN freopen("in.txt","r",stdin) 7 #define IO ios_base::sync_with_stdio(0),cin.tie(0) 8 #define pb push_back 9 typedef long long LL; 10 typedef pair<int, LL> PIR; 11 const int N = 1e6+5; 12 13 int n, m, G[55][55]; 14 string s; 15 16 int main() 17 { 18 //FIN; 19 cin >> n >> m; 20 rep(i, 1, n){ 21 cin >> s; 22 rep(j, 0, m-1){ 23 if(s[j] == 'o') G[i][j+1] = 0; 24 if(s[j] == '#') G[i][j+1] = -1; 25 if(s[j] == '.') G[i][j+1] = 1; 26 } 27 } 28 per(i, n, 1){ 29 rep(j, 1, m){ 30 if(G[i][j] == 0){ 31 int id = i+1; 32 while(id <= n && G[id][j] == 1) id++; 33 swap(G[i][j], G[id-1][j]); 34 } 35 } 36 } 37 rep(i, 1, n){ 38 rep(j, 1, m){ 39 if(G[i][j] == 0) cout << 'o'; 40 if(G[i][j] == 1) cout << '.'; 41 if(G[i][j] == -1) cout << '#'; 42 } 43 cout << endl; 44 } 45 return 0; 46 }
H:題意是讓你求L的聯通塊個數,C能夠表明L或者W。這是個簡單的搜索題,試想一下,若是我當前有個位置是L,那麼我確定這個聯通塊是存在的,
那麼往下搜索碰到C時,我若是把C當成L處理,對於我最後聯通塊的數目是隻可能減小,不可能增長的。由於剛開始已是一個L往下搜索,確定是有一個聯通塊了,
碰到C的,我能夠吧 LCL這種連在一塊兒,所以只減不增。
使用到的技巧:能夠每次dfs完了以後把通過的點變成W,這樣之後就不用再走了。注意第同樣例這種特殊判斷的狀況。
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define rep(i,a,b) for(int i = a;i <= b;++ i) 4 #define per(i,a,b) for(int i = a;i >= b;-- i) 5 #define mem(a,b) memset((a),(b),sizeof((a))) 6 #define FIN freopen("in.txt","r",stdin) 7 #define IO ios_base::sync_with_stdio(0),cin.tie(0) 8 #define pb push_back 9 typedef long long LL; 10 typedef pair<int, LL> PIR; 11 const int N = 1e6+5; 12 13 int n, m, res, G[55][55], dir[4][2] = {0,1,0,-1,1,0,-1,0}; 14 string s; 15 16 bool judge(int x, int y){ 17 if(x < 1 || x > n || y < 1 || y > m || G[x][y] == -1) return false; 18 return true; 19 } 20 void dfs(int x, int y){ 21 rep(i, 0, 3){ 22 int xi = x+dir[i][0], yi = y+dir[i][1]; 23 if(judge(xi, yi)){ 24 G[xi][yi] = -1; 25 dfs(xi, yi); 26 } 27 } 28 return ; 29 } 30 int main() 31 { 32 //FIN; 33 cin >> n >> m; 34 rep(i, 1, n){ 35 cin >> s; 36 rep(j, 0, m-1){ 37 if(s[j] == 'C') G[i][j+1] = 0; 38 if(s[j] == 'W') G[i][j+1] = -1; 39 if(s[j] == 'L') G[i][j+1] = 1; 40 } 41 } 42 int ans = 0; 43 rep(i, 1, n){ 44 rep(j, 1, m){ 45 if(G[i][j] == 1){ 46 ans++; 47 dfs(i, j); 48 } 49 } 50 } 51 cout << ans << endl; 52 return 0; 53 }
I: 咱們貪心的想一下,就能夠發現,我能配對多少對襪子是和個人maxn和tol有關的。
若是 tol/2 >= maxn,結果就是 tol/2, 不然的話結果就是 tol-maxn;具體能夠多試幾組數據畫一畫理解一下。
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define rep(i,a,b) for(int i = a;i <= b;++ i) 4 #define per(i,a,b) for(int i = a;i >= b;-- i) 5 #define mem(a,b) memset((a),(b),sizeof((a))) 6 #define FIN freopen("in.txt","r",stdin) 7 #define IO ios_base::sync_with_stdio(0),cin.tie(0) 8 #define pb push_back 9 typedef long long LL; 10 typedef pair<int, LL> PIR; 11 const int N = (1<<16); 12 13 int n; 14 LL x; 15 16 int main() 17 {IO; 18 //FIN; 19 cin >> n; 20 LL tol = 0, maxn = 0; 21 rep(i, 1, n) { cin >> x; maxn = max(maxn, x); tol += x; } 22 cout << (tol >= maxn*2 ? tol/2 : tol-maxn) << endl; 23 return 0; 24 }
J:這也是一道貪心題,咱們須要把位置大於0和小於0分開處理。對於每種狀況,由於咱們一趟所帶的信封是固定的,
因此咱們確定是想要把最遠的位置跑的趟數儘量少,那麼只須要從遠及近派送信封便可,每次送完信封還有剩餘的時候,咱們能夠把它送給下一個位置。
這樣正負兩種狀況都處理一下就能夠解決了。
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define rep(i,a,b) for(int i = a;i <= b;++ i) 4 #define per(i,a,b) for(int i = a;i >= b;-- i) 5 #define mem(a,b) memset((a),(b),sizeof((a))) 6 #define FIN freopen("in.txt","r",stdin) 7 #define IO ios_base::sync_with_stdio(0),cin.tie(0) 8 #define pb push_back 9 typedef long long LL; 10 typedef pair<int, LL> PIR; 11 const int N = (1<<16); 12 13 int n; 14 LL k; 15 16 struct Node{ 17 int pos; 18 LL c; 19 bool operator < (const Node &r) const { return pos < r.pos; } 20 }node[1005]; 21 22 int main() 23 {IO; 24 //FIN; 25 cin >> n >> k; 26 rep(i, 1, n) cin >> node[i].pos >> node[i].c; 27 sort(node+1, node+n+1); 28 LL ans = 0, res = 0; 29 int i = n; 30 while(i >= 1){ 31 if(node[i].pos < 0) break; 32 LL cnt = (node[i].c+k-1)/k; 33 ans += node[i].pos*cnt; 34 LL sum = cnt*k; 35 while(i >= 1 && sum && node[i].pos >= 0){ 36 if(node[i].c <= sum) { sum -= node[i].c; i--; } 37 else { node[i].c -= sum; break; } 38 } 39 } 40 i = 1; 41 while(i <= n){ 42 if(node[i].pos >= 0) break; 43 LL cnt = (node[i].c+k-1)/k; 44 ans -= node[i].pos*cnt; 45 LL sum = k*cnt; 46 while(i <= n && sum && node[i].pos < 0){ 47 if(node[i].c <= sum) { sum -= node[i].c; i++; } 48 else { node[i].c -= sum; break; } 49 } 50 } 51 cout << ans*2 << endl; 52 return 0; 53 }
K:擲骰子判斷a贏的機率,總共只有6*6=36種狀況,最後的結果 ans = a贏 / (36 - 平局);高中簡單機率計算題
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define rep(i,a,b) for(int i = a;i <= b;++ i) 4 #define per(i,a,b) for(int i = a;i >= b;-- i) 5 #define mem(a,b) memset((a),(b),sizeof((a))) 6 #define FIN freopen("in.txt","r",stdin) 7 #define IO ios_base::sync_with_stdio(0),cin.tie(0) 8 #define pb push_back 9 typedef long long LL; 10 typedef pair<int, LL> PIR; 11 const int N = 1e6+5; 12 13 int a[10], b[10]; 14 15 int main() 16 { 17 //FIN; 18 rep(i, 1, 6) cin >> a[i]; 19 rep(i, 1, 6) cin >> b[i]; 20 double cnt1 = 0, cnt2 = 0; 21 rep(i, 1, 6){ 22 rep(j, 1, 6){ 23 if(a[i] > b[j]) cnt1++; 24 if(a[i] == b[j]) cnt2++; 25 } 26 } 27 printf("%.5lf\n", cnt1*1.0/(36-cnt2)); 28 return 0; 29 }
L:能夠知道,只有三種矩形,那麼不管怎麼拼,其中的最長邊纔有多是最後正方形的邊長的,基於這一點,能夠分類討論一下。
1 #include<bits/stdc++.h> 2 #define IO ios_base::sync_with_stadio(0);cin.tie(0); 3 using namespace std; 4 int a[55][55]; 5 int main() 6 { 7 int a1, b1, a2, b2, a3, b3; 8 while(cin >> a1 >> b1 >> a2 >> b2 >> a3 >> b3){ 9 int a = max(a1, b1); 10 int b = max(a2, b2); 11 int c = max(a3, b3); 12 int d = a, flag = 1; 13 if(b > d){d = b; flag = 2;} 14 if(c > d){d = c; flag = 3;} 15 if(flag == 1){ 16 int e = a2 + a3; 17 int f = a2 + b3; 18 int g = b2 + a3; 19 int h = b2 + b3; 20 if(e == d){ 21 if(b2 == b3 && (b2 + a1 == d || b2 + b1 == d)){ cout << "YES" << endl; continue;} 22 } 23 if(f == d){ 24 if(b2 == a3 && (b2 + a1 == d || b2 + b1 == d)) { cout << "YES" << endl; continue;} 25 } 26 if(g == d){ 27 if(a2 == b3 && (a2 + a1 == d || a2 + b1 == d)) { cout << "YES" << endl; continue;} 28 } 29 if(h == d){ 30 if(a2 == a3 && (a2 + a1 == d || a2 + b1 == d)) { cout << "YES" << endl; continue;} 31 } 32 } 33 else if(flag == 2){ 34 int e = a1 + a3; 35 int f = a1 + b3; 36 int g = b1 + a3; 37 int h = b1 + b3; 38 if(e == d){ 39 if(b1 == b3 && (b1 + a2 == d || b1 + b2 == d)){ cout << "YES" << endl; continue;} 40 } 41 if(f == d){ 42 if(b1 == a3 && (b1 + a2 == d || b1 + b2 == d)) { cout << "YES" << endl; continue;} 43 } 44 if(g == d){ 45 if(a1 == b3 && (a1 + a2 == d || a1 + b2 == d)) { cout << "YES" << endl; continue;} 46 } 47 if(h == d){ 48 if(a1 == a3 && (a1 + a2 == d || a1 + b2 == d)) { cout << "YES" << endl; continue;} 49 } 50 } 51 else if(flag == 3){ 52 int e = a2 + a1; 53 int f = a2 + b1; 54 int g = b2 + a1; 55 int h = b2 + b1; 56 if(e == d){ 57 if(b2 == b1 && (b1 + a3 == d || b1 + b3 == d)){ cout << "YES" << endl; continue;} 58 } 59 if(f == d){ 60 if(b2 == a1 && (b2 + a3 == d || b2 + b3 == d)) { cout << "YES" << endl; continue;} 61 } 62 if(g == d){ 63 if(a2 == b1 && (b1 + a3 == d || b1 + b3 == d)) { cout << "YES" << endl; continue;} 64 } 65 if(h == d){ 66 if(a2 == a1 && (a1 + a3 == d || a1 + b3 == d)) { cout << "YES" << endl; continue;} 67 } 68 } 69 cout << "NO" << endl; 70 } 71 }
M:題意是讓你找最長交錯子序列,這個序列是上升降低或者降低上升交錯出現的。其實這個題的本質和A的最長上升子序列是同樣的,
最長上升是在每一個位置i咱們找的是i以前的最長上升,這道題換成了兩種狀況
一種狀況是假設當前要上升的話,咱們找i以前的最長降低。另外一種是假設當前降低,咱們找i以前的最長上升,用兩個dp數組就能夠解決了。
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define rep(i,a,b) for(int i = a;i <= b;++ i) 4 #define per(i,a,b) for(int i = a;i >= b;-- i) 5 #define mem(a,b) memset((a),(b),sizeof((a))) 6 #define FIN freopen("in.txt","r",stdin) 7 #define IO ios_base::sync_with_stdio(0),cin.tie(0) 8 #define pb push_back 9 typedef long long LL; 10 typedef pair<int, LL> PIR; 11 const int N = 1e6+5; 12 13 int n, a[55], dp[55][2]; 14 15 int main() 16 { 17 //FIN; 18 cin >> n; 19 rep(i, 1, n) cin >> a[i]; 20 int maxn = 1; 21 rep(i, 1, n){ 22 dp[i][0] = dp[i][1] = 1; 23 rep(j, 1, i-1){ 24 if(a[j] > a[i]) dp[i][0] = max(dp[i][0], dp[j][1]+1); 25 if(a[j] < a[i]) dp[i][1] = max(dp[i][1], dp[j][0]+1); 26 } 27 maxn = max(maxn, max(dp[i][0], dp[i][1])); 28 } 29 cout << maxn << endl; 30 return 0; 31 }