mnist的卷積神經網絡例子和上一篇博文中的神經網絡例子大部分是相同的。可是CNN層數要多一些,網絡模型須要本身來構建。後端
程序比較複雜,我就分紅幾個部分來敘述。網絡
首先,下載並加載數據:session
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #下載並加載mnist數據 x = tf.placeholder(tf.float32, [None, 784]) #輸入的數據佔位符 y_actual = tf.placeholder(tf.float32, shape=[None, 10]) #輸入的標籤佔位符
定義四個函數,分別用於初始化權值W,初始化偏置項b, 構建卷積層和構建池化層。 ide
#定義一個函數,用於初始化全部的權值 W def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) #定義一個函數,用於初始化全部的偏置項 b def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) #定義一個函數,用於構建卷積層 def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #定義一個函數,用於構建池化層 def max_pool(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
接下來構建網絡。整個網絡由兩個卷積層(包含激活層和池化層),一個全鏈接層,一個dropout層和一個softmax層組成。 函數
#構建網絡 x_image = tf.reshape(x, [-1,28,28,1]) #轉換輸入數據shape,以便於用於網絡中 W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #第一個卷積層 h_pool1 = max_pool(h_conv1) #第一個池化層 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) #第二個卷積層 h_pool2 = max_pool(h_conv2) #第二個池化層 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #reshape成向量 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #第一個全鏈接層 keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #dropout層 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #softmax層
網絡構建好後,就能夠開始訓練了。測試
cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict)) #交叉熵 train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) #梯度降低法 correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #精確度計算 sess=tf.InteractiveSession() sess.run(tf.initialize_all_variables()) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: #訓練100次,驗證一次 train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0}) print 'step %d, training accuracy %g'%(i,train_acc) train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5}) test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0}) print "test accuracy %g"%test_acc
Tensorflow依賴於一個高效的C++後端來進行計算。與後端的這個鏈接叫作session。通常而言,使用TensorFlow程序的流程是先建立一個圖,而後在session中啓動它。spa
這裏,咱們使用更加方便的InteractiveSession
類。經過它,你能夠更加靈活地構建你的代碼。它能讓你在運行圖的時候,插入一些計算圖,這些計算圖是由某些操做(operations)構成的。這對於工做在交互式環境中的人們來講很是便利,好比使用IPython。code
訓練20000次後,再進行測試,測試精度能夠達到99%。orm
完整代碼:blog
# -*- coding: utf-8 -*- """ Created on Thu Sep 8 15:29:48 2016 @author: root """ import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #下載並加載mnist數據 x = tf.placeholder(tf.float32, [None, 784]) #輸入的數據佔位符 y_actual = tf.placeholder(tf.float32, shape=[None, 10]) #輸入的標籤佔位符 #定義一個函數,用於初始化全部的權值 W def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) #定義一個函數,用於初始化全部的偏置項 b def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) #定義一個函數,用於構建卷積層 def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #定義一個函數,用於構建池化層 def max_pool(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') #構建網絡 x_image = tf.reshape(x, [-1,28,28,1]) #轉換輸入數據shape,以便於用於網絡中 W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #第一個卷積層 h_pool1 = max_pool(h_conv1) #第一個池化層 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) #第二個卷積層 h_pool2 = max_pool(h_conv2) #第二個池化層 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #reshape成向量 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #第一個全鏈接層 keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #dropout層 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #softmax層 cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict)) #交叉熵 train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) #梯度降低法 correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #精確度計算 sess=tf.InteractiveSession() sess.run(tf.initialize_all_variables()) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: #訓練100次,驗證一次 train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0}) print('step',i,'training accuracy',train_acc) train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5}) test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0}) print("test accuracy",test_acc)