JavaShuo
欄目
標籤
深度網絡推理加速(Towards Lightweight Convolutional Neural Networks for Object Detection)
時間 2020-07-17
標籤
深度
網絡
推理
加速
lightweight
convolutional
neural
networks
object
detection
欄目
系統網絡
简体版
原文
原文鏈接
摘要:本文研究目標是少類別實時目標檢測,研究了在保留較高檢測率的前提下最大程度的減少模型大小,最終實現了在CPU上的實時檢測。本文的推理加速機制和量化壓縮等方法是能夠並行的。算法 1, 經過增大feature map的尺寸,減少通道數能夠獲得準確率且快的檢測模型,這麼作的依據是對於實際的不多類別的目標檢測問題,用於解決多類別分類問題的網絡中不少通道是冗餘的。網絡 2, 經過在大的預訓練模型上簡
>>阅读原文<<
相關文章
1.
論文筆記: PVANet: Lightweight Deep Neural Networks for Real-time Object Detection
2.
Convolutional Neural Networks(week 3)---Object detection
3.
【PVANet】《PVANET:Deep but Lightweight Neural Networks for Real-time Object Detection》
4.
【目標檢測】PVANET:Deep but Lightweight Neural Networks for Real-time Object Detection
5.
Deep Neural Networks for Object Detection
6.
PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
7.
Convolutional Neural Network - Object Detection
8.
Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages
9.
ROLO:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
10.
LCDet Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems
更多相關文章...
•
Docker 鏡像加速
-
Docker教程
•
網絡協議是什麼?
-
TCP/IP教程
•
算法總結-深度優先算法
•
使用阿里雲OSS+CDN部署前端頁面與加速靜態資源
相關標籤/搜索
networks
lightweight
convolutional
neural
detection
加速度
網站加速
網頁加速
高速網絡
object...object
系統網絡
網站品質教程
網站建設指南
網站主機教程
調度
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
resiprocate 之repro使用
2.
Ubuntu配置Github並且新建倉庫push代碼,從已有倉庫clone代碼,並且push
3.
設計模式9——模板方法模式
4.
avue crud form組件的快速配置使用方法詳細講解
5.
python基礎B
6.
從零開始···將工程上傳到github
7.
Eclipse插件篇
8.
Oracle網絡服務 獨立監聽的配置
9.
php7 fmp模式
10.
第5章 Linux文件及目錄管理命令基礎
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文筆記: PVANet: Lightweight Deep Neural Networks for Real-time Object Detection
2.
Convolutional Neural Networks(week 3)---Object detection
3.
【PVANet】《PVANET:Deep but Lightweight Neural Networks for Real-time Object Detection》
4.
【目標檢測】PVANET:Deep but Lightweight Neural Networks for Real-time Object Detection
5.
Deep Neural Networks for Object Detection
6.
PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
7.
Convolutional Neural Network - Object Detection
8.
Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages
9.
ROLO:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
10.
LCDet Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems
>>更多相關文章<<