具體數學第二版第三章習題(4)

46 (1)證實:函數

首先有$2n(n+1)=\left \lfloor 2n(n+1)+\frac{1}{2} \right \rfloor=\left \lfloor 2(n^{2}+n+\frac{1}{4}) \right \rfloor=\left \lfloor 2(n+\frac{1}{2})^{2} \right \rfloor$spa

其次,令$n+\theta =(\sqrt{2}^{l}+\sqrt{2}^{l-1})m=(1+\frac{\sqrt{2}}{2})\sqrt{2}^{l}m$,$n^{'}+\theta^{'} =(\sqrt{2}^{l+1}+\sqrt{2}^{l})m=(1+\sqrt{2})\sqrt{2}^{l}m$gc

若是$l$爲偶數,那麼$n+\theta =(1+\frac{\sqrt{2}}{2})k,n^{'}+\theta^{'} =(1+\sqrt{2})k$.因此$\theta =\left \{ \frac{\sqrt{2}}{2}k \right \},\theta^{'} =\left \{ \sqrt{2}k \right \}$,因此$\theta$和$\theta^{'}$的關係是要麼$\theta^{'}=2\theta$($\left \lfloor \sqrt{2}k \right \rfloor$爲偶數),要麼$\theta^{'}=2\theta-1$($\left \lfloor \sqrt{2}k \right \rfloor$爲奇數);集合

若是$l$爲奇數,那麼$n+\theta =(1+\sqrt{2})k,n^{'}+\theta^{'} =(2+\sqrt{2})k$,這時候$\theta = \theta^{'}$co

最後,假設要證實的式子成立,那麼$n^{'}=\left \lfloor \sqrt{2n(n+1)} \right \rfloor$數字

$=\left \lfloor \sqrt{\left \lfloor 2(n+\frac{1}{2})^{2} \right \rfloor} \right \rfloor$background

$=\left \lfloor \sqrt{2}(n+\frac{1}{2}) \right \rfloor$ (這一步參見公式$3.9$)tar

$=\left \lfloor \sqrt{2}\left ( (1+\frac{\sqrt{2}}{2})\sqrt{2}^{l}m -\theta +\frac{1}{2}\right ) \right \rfloor$

$=\left \lfloor n^{'}+\theta^{'}+\sqrt{2}(\frac{1}{2}-\theta) \right \rfloor$

因此只要證實$0\leq \theta^{'}+\sqrt{2}(\frac{1}{2}-\theta)<1$

首先當$\theta=\theta^{'}$時成立,

其次,若是$\theta^{'}=2\theta-d$時($d=0$或者$d=1$),那麼$0\leq \theta^{'}+\sqrt{2}(\frac{1}{2}-\theta)<1$

$\Leftrightarrow 0\leq \theta^{'}+\sqrt{2}(\frac{1}{2}-\frac{\theta^{'} +d}{2})<1$

$\Leftrightarrow 0\leq \theta^{'}(2-\sqrt{2})+\sqrt{2}(1-d)<2$

最後這個式子明顯成立

(2)因爲$Spec(1+\frac{\sqrt{2}}{2}),Spec(1+\sqrt{2})$是一個劃分,因此對於任何一個$a$必定存在惟一的$(l,m)$使得$a=(\sqrt{2}^{l}+\sqrt{2}^{l-1})m$,這時候$L_{n}=\left \lfloor\left (  \sqrt{2}^{l+n} -\sqrt{2}^{l+n-1} \right )m\right \rfloor$

47 (1) $c=-\frac{1}{2}$ (2)$c$是整數(3)$c=0$(4)$c$能夠爲任意值。

48 令$x^{:0}=1,x^{:(k+1)}=x\left \lfloor x^{:k} \right \rfloor,a_{k}=\left \{ x^{:k} \right \},b_{k}=\left \lfloor x^{:k} \right \rfloor\Rightarrow a_{k}+b_{k}=x^{:k}=xb_{k-1}$

因此$(1-xz)(1+b_{1}z+b_{2}z^{2}+...)=1-a_{1}z-a_{2}z^{2}-...\Rightarrow \frac{1}{1-xz}=\frac{1+b_{1}z+b_{2}z^{2}+...}{1-a_{1}z-a_{2}z^{2}-...}$

對上面的式子兩邊求$log$而且對$z$求導能夠獲得$\frac{x}{1-xz}=\frac{a_{1}+2a_{2}z+3a_{3}z^{2}+...}{1-a_{1}z-a_{2}z^{2}-...}+\frac{b_{1}+2b_{2}z+3b_{3}z^{2}+...}{1+b_{1}z+b_{2}z^{2}-...}$

利用公式$\frac{1}{1-z}=1+z+z^{2}+z^{3}+...$分別展開上面式子的左右兩側,能夠獲得左側$z^{n-1}$的係數爲$x^{n}$,右側與$z^{n-1}$($n=3$)相關的展開爲$(a_{1}+2a_{2}z+3a_{3}z^{2})\left ( 1+(a_{1}z+a_{2}z^{2})+(a_{1}z+a_{2}z^{2})^{2} \right )+(b_{1}+2b_{2}z+3b_{3}z^{2})\left ( 1-(b_{1}z+b_{2}z^{2})+(b_{1}z+b_{2}z^{2})^{2} \right )=(a_{1}+2a_{2}z+3a_{3}z^{2})\left ( 1+a_{1}z+(a_{1}^{2}+a_{2})z^{2} \right )+(b_{1}+2b_{2}z+3b_{3}z^{2})\left ( 1-b_{1}z+(b_{1}^{2}-b_{2})z^{2} \right )$

能夠獲得$z^{2}$的係數爲$a_{1}(a_{1}^{2}+a_{2})+2a_{1}a_{2}+3a_{3}+b_{1}(b_{1}^{2}-b_{2})-2b_{1}b_{2}+3b_{3}=3(a_{3}+b_{3})+3a_{1}a_{2}+a_{1}^{3}-3b_{1}b_{2}+b_{1}^{3}$

因此能夠證實$n=3$時成立。

49 $\left \lfloor n\alpha \right \rfloor+\left \lfloor n\beta \right \rfloor$

$=\left \lfloor n\alpha \right \rfloor+\left \lfloor n(\left \lfloor \beta \right \rfloor+\left \{ \beta \right \}) \right \rfloor$

$=\left \lfloor n\alpha \right \rfloor+n\left \lfloor \beta \right \rfloor+\left \lfloor n\left \{ \beta \right \} \right \rfloor$

$=\left \lfloor n\left \{ \beta \right \} \right \rfloor+\left \lfloor n(\alpha+\left \lfloor \beta \right \rfloor) \right \rfloor$

因此令$\alpha^{'}=\left \{ \beta \right \},\beta^{'}=\alpha+\left \lfloor \beta \right \rfloor$能夠獲得徹底相同的集合。因此$\alpha=\left \{ \beta \right \}$

而且,若是$\alpha=\left \{ \beta \right \}$,令$m=\left \lfloor \beta \right \rfloor,S=\left \{ \left \lfloor n\alpha \right \rfloor+\left \lfloor n\beta \right \rfloor-mn|n>0 \right \}=\left \{ 2\left \lfloor n\alpha \right \rfloor|n>0 \right \}$

因此$S$中相鄰兩個元素的差值要麼是0要麼是2,因此$\frac{1}{2}S=Spec(\alpha)$進而能夠肯定$\alpha$

50 書中給出的解釋是$\alpha \beta ,\beta ,1$在有理數上線性獨立,也就是說不存在有理數$\frac{p}{q},\frac{m}{n}$使得$1=\frac{p}{q}\alpha\beta+\frac{m}{n}\beta$。如何證實徹底不懂。

51 題目中的證實:

(1)令$g(n)=Z_{n}^{-2^{n}}>0$,由於$\frac{g(n)}{g(n-1)}=\frac{Z_{n}^{-2^{n}}}{Z_{n-1}^{-2^{n-1}}}=\frac{(Z_{n-1}^{2}-1)^{-2^{n}}}{Z_{n-1}^{-2^{n-1}}}<\frac{(Z_{n-1}^{2})^{-2^{n}}}{Z_{n-1}^{-2^{n-1}}}=1$,因此$g(n)$是減函數,因此$f(x)^{2^{n}}<Z_{n}$

(2)令$p(n)=(Z_{n}-1)^{-2^{n}}$,將$p(n),p(n-1)$兩邊同時取$2^{n+1}$,能夠獲得$p(n)$是增函數,因此$f(x)^{2^{n}}>Z_{n}-1$

$f(x)$其餘的性質不知道。

52 首先題目中的描述貌似應該是$\alpha_{1}>\alpha_{2}>...>\alpha_{m}$

$Spec(7;-3)\bigcup Spec(\frac{7}{2};-1)\bigcup Spec(\frac{7}{4};0)$是已知的$\alpha$是有理數的一組解。因此題目中給出的證實有多是成立的。

53 有些數字好像很快就找到了,好比

$\frac{2}{5}=\frac{1}{3}+\frac{1}{15},\frac{2}{7}=\frac{1}{5}+\frac{1}{13}+\frac{1}{115}+\frac{1}{10465},\frac{3}{11}=\frac{1}{5}+\frac{1}{15}+\frac{1}{165}$

相關文章
相關標籤/搜索