numpy.argmax 用在求解混淆矩陣用

numpy.argmax

numpy. argmax (a, axis=None, out=None)[source]

Returns the indices of the maximum values along an axis.html

Parameters:

a : array_likepython

Input array.git

axis : int, optionalgithub

By default, the index is into the flattened array, otherwise along the specified axis.app

out : array, optionaldom

If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype.ide

Returns:

index_array : ndarray of intsthis

Array of indices into the array. It has the same shape as a.shape with the dimension along axis removed.lua

See alsourl

ndarray.argmax, argmin

amax
The maximum value along a given axis.
unravel_index
Convert a flat index into an index tuple.

Notes

In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are returned.

Examples

>>> a = np.arange(6).reshape(2,3) >>> a array([[0, 1, 2],  [3, 4, 5]]) >>> np.argmax(a) 5 >>> np.argmax(a, axis=0) array([1, 1, 1]) >>> np.argmax(a, axis=1) array([2, 2]) 
>>> b = np.arange(6) >>> b[1] = 5 >>> b array([0, 5, 2, 3, 4, 5]) >>> np.argmax(b) # Only the first occurrence is returned. 1

在多分類模型訓練中,個人使用:org_labels = [0,1,2,....max_label] 從0開始的標記類別
if __name__ == "__main__":
    width, height = 32, 32
    X, Y, org_labels = load_data(dirname="data", resize_pics=(width, height))
    trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.2, random_state=666)
    print("sample data:")
    print(trainX[0])
    print(trainY[0])
    print(testX[-1])
    print(testY[-1])

    model = get_model(width, height, classes=100)

    filename = 'cnn_handwrite-acc0.8.tflearn'
    # try to load model and resume training
    #try:
    #    model.load(filename)
    #    print("Model loaded OK. Resume training!")
    #except:
    #    pass

    # Initialize our callback with desired accuracy threshold.
    early_stopping_cb = EarlyStoppingCallback(val_acc_thresh=0.6)
    try:
        model.fit(trainX, trainY, validation_set=(testX, testY), n_epoch=500, shuffle=True,
                  snapshot_epoch=True, # Snapshot (save & evaluate) model every epoch.
                  show_metric=True, batch_size=32, callbacks=early_stopping_cb, run_id='cnn_handwrite')
    except StopIteration as e:
        print("OK, stop iterate!Good!")

    model.save(filename)

    # predict all data and calculate confusion_matrix
    model.load(filename)

    pro_arr =model.predict(X)
    predict_labels = np.argmax(pro_arr, axis=1)
    print(classification_report(org_labels, predict_labels))
    print(confusion_matrix(org_labels, predict_labels))
相關文章
相關標籤/搜索