客戶端skd 使用gRPC做爲通訊協議,定時(大概是120s)向服務器發送pingServer 請求。 服務端是80端口,如xxx:80.
發現客戶端不斷的端口重連服務器的。 使用netstat -antp
如圖, 如標紅的服務器地址鏈接是TIME_WAIT,後面有和服務器創建鏈接 ESTABLISHED。 TIME_WAIT 狀態代表是client 端主動斷開了鏈接。 這和我以前的認知有點衝突,gRPC 應該是長鏈接,爲何這裏每次都斷開呢,這樣不就長了短鏈接了嗎? 並且客戶端主動斷開的,會不會是client端哪裏有問題? 帶着疑問,在client 抓了一包, 發現client 老是受到一個 length 爲17 的包,而後就開始FIN 包,走TCP 揮手的流程。 使用WireShark 對tcpdump的結果查看,發現這個length 17 的包,是一個GOAWAY 包。
如圖:html
這個是HTTP2定義的一個「優雅」退出的機制。 這裏有HTTP2 GOAWAY stream 包的說明。
根據以前的對gRPC的瞭解,gRPC client 會解析域名,而後會維護一個lb 負載均衡, 這個應該是gRPC對idle 鏈接的管理。pingServer 的時間間隔是120s, 可是gRPC 認爲中間是idle鏈接, 因此通知client 關閉空閒鏈接? 爲了驗證這個想法,修改了一下gRPC 的demo, 由於咱們client 端使用是cpp 的gRPC 異步調用方式, 因此更加gRPC 的異步demo, 寫了一個簡單訪問服務器的async_client
代碼:服務器
#include <iostream> #include <memory> #include <string> #include <grpcpp/grpcpp.h> #include <grpc/support/log.h> #include <thread> #include "gateway.grpc.pb.h" using grpc::Channel; using grpc::ClientAsyncResponseReader; using grpc::ClientContext; using grpc::CompletionQueue; using grpc::Status; using yournamespace::PingReq; using yournamespace::PingResp; using yournamespace::srv; class GatewayClient { public: explicit GatewayClient(std::shared_ptr<Channel> channel) : stub_(srv::NewStub(channel)) {} // Assembles the client's payload and sends it to the server. //void PingServer(const std::string& user) { void PingServer() { // Data we are sending to the server. PingReq request; request.set_peerid("1111111111111113"); request.set_clientinfo(""); request.set_capability(1); request.add_iplist(4197554190); request.set_tcpport(8080); request.set_udpport(8080); request.set_upnpip(4197554190); request.set_upnpport(8080); request.set_connectnum(10000); request.set_downloadingspeed(100); request.set_uploadingspeed(10); request.set_maxdownloadspeed(0); request.set_maxuploadspeed(0); // Call object to store rpc data AsyncClientCall* call = new AsyncClientCall; // stub_->PrepareAsyncSayHello() creates an RPC object, returning // an instance to store in "call" but does not actually start the RPC // Because we are using the asynchronous API, we need to hold on to // the "call" instance in order to get updates on the ongoing RPC. call->response_reader = stub_->AsyncPing(&call->context, request, &cq_); // StartCall initiates the RPC call //call->response_reader->StartCall(); // Request that, upon completion of the RPC, "reply" be updated with the // server's response; "status" with the indication of whether the operation // was successful. Tag the request with the memory address of the call object. call->response_reader->Finish(&call->reply, &call->status, (void*)call); } // Loop while listening for completed responses. // Prints out the response from the server. void AsyncCompleteRpc() { void* got_tag; bool ok = false; // Block until the next result is available in the completion queue "cq". while (cq_.Next(&got_tag, &ok)) { // The tag in this example is the memory location of the call object AsyncClientCall* call = static_cast<AsyncClientCall*>(got_tag); // Verify that the request was completed successfully. Note that "ok" // corresponds solely to the request for updates introduced by Finish(). GPR_ASSERT(ok); if (call->status.ok()) std::cout << "xNetClient received: " << call->reply.code() << " task:" << call->reply.tasks_size() <<" pinginterval:"<< call->reply.pinginterval() << std::endl; else //std::cout << "RPC failed" << std::endl; std::cout << ": status = " << call->status.error_code() << " (" << call->status.error_message() << ")" << std::endl; // Once we're complete, deallocate the call object. delete call; } } private: // struct for keeping state and data information struct AsyncClientCall { // Container for the data we expect from the server. PingResp reply; // Context for the client. It could be used to convey extra information to // the server and/or tweak certain RPC behaviors. ClientContext context; // Storage for the status of the RPC upon completion. Status status; std::unique_ptr<ClientAsyncResponseReader<PingResp>> response_reader; }; // Out of the passed in Channel comes the stub, stored here, our view of the // server's exposed services. std::unique_ptr<srv::Stub> stub_; // The producer-consumer queue we use to communicate asynchronously with the // gRPC runtime. CompletionQueue cq_; }; int main(int argc, char** argv) { // Instantiate the client. It requires a channel, out of which the actual RPCs // are created. This channel models a connection to an endpoint (in this case, // localhost at port 50051). We indicate that the channel isn't authenticated // (use of InsecureChannelCredentials()). if (argc < 2){ std::cout << "usage: " <<argv[0]<< " domain:port" << std::endl; std::cout << "eg: " <<argv[0]<< " gw.xnet.xcloud.sandai.net:80" << std::endl; return 0; } GatewayClient xNetClient(grpc::CreateChannel( argv[1], grpc::InsecureChannelCredentials())); // Spawn reader thread that loops indefinitely std::thread thread_ = std::thread(&GatewayClient::AsyncCompleteRpc, &xNetClient); for (int i = 0; i < 1000; i++) { xNetClient.PingServer(); // The actual RPC call! std::this_thread::sleep_for(std::chrono::seconds(120)); } std::cout << "Press control-c to quit" << std::endl << std::endl; thread_.join(); //blocks forever return 0; }
接下來的時間很簡單,運行一下。
使用netstat -natp 觀察,能夠從新。 async_client 也是斷開,重連。
進一步調試發現,把發包的時間修改成10s 的時候,能夠保持鏈接,大於10s基本上鍊接就會斷開。負載均衡
小結一下:
gRPC 管理鏈接的方式,默認狀況下,大於10s沒有數據發送,gRPC 就會認爲是個idle 鏈接。server 端會給client 端發送一個GOAWAY 的包。client 收到這個包以後就會主動關閉鏈接。下次須要發包的時候,就會從新創建鏈接。dom
目前還不知道是否是有配置項修改這個值,對gRPC 的機制還不是很熟,後面再研究一下。異步