Android : Camera2/HAL3 框架分析

1、Android O上的Treble機制:java

  在 Android O 中,系統啓動時,會啓動一個 CameraProvider 服務,它是從 cameraserver 進程中分離出來,做爲一個獨立進程 android.hardware.camera.provider@2.4-service 用來控制 camera HAL,cameraserver經過 HIDL 機制於camera provider進行通訊。HIDL源自於 Android O 版本加入的 Treble 機制,它的主要功能是將 service 與 HAL 隔離,以方便 HAL 部分進行獨立升級,相似於 APP 與 Framework 之間的 Binder 通訊機制,經過引入一個進程間通訊機制而針對不一樣層級進行解耦(從 Local call 變成了 Remote call)。以下圖:android

      

  

 cameraserver 與 provider 這兩個進程啓動、初始化的調用邏輯,以下圖:api

      

 

 

2、Camera HAL3的框架更新:session

  • Application framework:用於給APP提供訪問hardware的Camera API2,經過binder來訪問camera service。
  • AIDL: 基於Binder實現的一個用於讓App fw代碼訪問natice fw代碼的接口。其實現存在於下述路徑:frameworks/av/camera/aidl/android/hardware。其中:

    (1) ICameraService 是相機服務的接口。用於請求鏈接、添加監聽等。
    (2) ICameraDeviceUser 是已打開的特定相機設備的接口。應用框架可經過它訪問具體設備。
    (3) ICameraServiceListener 和 ICameraDeviceCallbacks 分別是從 CameraService 和 CameraDevice 到應用框架的回調。架構

  • Natice framework:frameworks/av/。提供了ICameraService、ICameraDeviceUser、ICameraDeviceCallbacks、ICameraServiceListener等aidl接口的實現。以及camera server的main函數。
  • Binder IPC interface:提供進程間通訊的接口,APP和CameraService的通訊、CameraService和HAL的通訊。其中,AIDL、HIDL都是基於Binder實現的。
  • Camera Service:frameworks/av/services/camera/。同APP、HAL交互的服務,起到了承上啓下的做用。
  • HAL:Google的HAL定義了可讓Camera Service訪問的標準接口。對於供應商而言,必需要實現這些接口。

 

 1.Camera HAL3 構建連路的過程,以下圖(紅色虛線是上行路線,黑色虛線則是下行路線):app

  

 

  2.從 App 到 CameraService的調用流程框架

  從 Application 鏈接到 CameraService,這涉及到 Android 架構中的三個層次:App 層,Framework 層,Runtime 層。其中,App 層直接調用 Framework 層所封裝的方法,而 Framework 層須要經過 Binder 遠程調用 Runtime 中 CameraService 的函數。
  這一部分主要的函數調用邏輯以下圖所示:
  異步

 
  在 App 中,須要調用打開相機的API以下:ide

  • CameraCharacteristics:描述攝像頭的各類特性,咱們能夠經過CameraManager的getCameraCharacteristics(@NonNull String cameraId)方法來獲取。
  • CameraDevice:描述系統攝像頭,相似於早期的Camera。
  • CameraCaptureSession:Session類,當須要拍照、預覽等功能時,須要先建立該類的實例,而後經過該實例裏的方法進行控制(例如:拍照 capture())。
  • CaptureRequest:描述了一次操做請求,拍照、預覽等操做都須要先傳入CaptureRequest參數,具體的參數控制也是經過CameraRequest的成員變量來設置。
  • CaptureResult:描述拍照完成後的結果。


  例如打開camera的java代碼:函數

 mCameraManager.openCamera(currentCameraId, stateCallback, backgroundHandler);
  Camera2拍照流程以下所示:
  

  

 (1)Framework CameraManager :/frameworks/base/core/java/android/hardware/camera2/CameraManager.java

  最初的入口就是 CameraManager 的 openCamera 方法,但經過代碼能夠看到,它僅僅是調用了 openCameraForUid 方法。

@RequiresPermission(android.Manifest.permission.CAMERA)
public void openCamera(@NonNull String cameraId,
        @NonNull final CameraDevice.StateCallback callback, @Nullable Handler handler)
        throws CameraAccessException {

    openCameraForUid(cameraId, callback, handler, USE_CALLING_UID);
}

  下面的代碼忽略掉了一些參數檢查相關操做,最終主要調用了 openCameraDeviceUserAsync 方法。

public void openCameraForUid(@NonNull String cameraId,
        @NonNull final CameraDevice.StateCallback callback, @Nullable Handler handler,
        int clientUid)
        throws CameraAccessException {
    /* Do something in*/
    ......
    /* Do something out*/
    openCameraDeviceUserAsync(cameraId, callback, handler, clientUid);
}

  參考以下注釋分析:

private CameraDevice openCameraDeviceUserAsync(String cameraId,
        CameraDevice.StateCallback callback, Handler handler, final int uid)
        throws CameraAccessException {
    CameraCharacteristics characteristics = getCameraCharacteristics(cameraId);
    CameraDevice device = null;

    synchronized (mLock) {

        ICameraDeviceUser cameraUser = null;

        android.hardware.camera2.impl.CameraDeviceImpl deviceImpl =   //實例化一個 CameraDeviceImpl。構造時傳入了 CameraDevice.StateCallback 以及 Handler。
                new android.hardware.camera2.impl.CameraDeviceImpl(  
                    cameraId,
                    callback,
                    handler,
                    characteristics,
                    mContext.getApplicationInfo().targetSdkVersion);

        ICameraDeviceCallbacks callbacks = deviceImpl.getCallbacks(); //獲取 CameraDeviceCallback 實例,這是提供給遠端鏈接到 CameraDeviceImpl 的接口。

       try {
            if (supportsCamera2ApiLocked(cameraId)) {  //HAL3 中走的是這一部分邏輯,主要是從 CameraManagerGlobal 中獲取 CameraService 的本地接口,經過它遠端調用(採用 Binder 機制) connectDevice 方法鏈接到相機設備。
                                //注意返回的 cameraUser 實際上指向的是遠端 CameraDeviceClient 的本地接口。
                // Use cameraservice's cameradeviceclient implementation for HAL3.2+ devices
                ICameraService cameraService = CameraManagerGlobal.get().getCameraService();
                if (cameraService == null) {
                    throw new ServiceSpecificException(
                        ICameraService.ERROR_DISCONNECTED,
                        "Camera service is currently unavailable");
                }
                cameraUser = cameraService.connectDevice(callbacks, cameraId,
                        mContext.getOpPackageName(), uid);
            } else {
                // Use legacy camera implementation for HAL1 devices
                int id;
                try {
                    id = Integer.parseInt(cameraId);
                } catch (NumberFormatException e) {
                    throw new IllegalArgumentException("Expected cameraId to be numeric, but it was: "
                            + cameraId);
                }

                Log.i(TAG, "Using legacy camera HAL.");
                cameraUser = CameraDeviceUserShim.connectBinderShim(callbacks, id);
            }
        } catch (ServiceSpecificException e) {
            /* Do something in */
            ......
            /* Do something out */
        }

        // TODO: factor out callback to be non-nested, then move setter to constructor
        // For now, calling setRemoteDevice will fire initial
        // onOpened/onUnconfigured callbacks.
        // This function call may post onDisconnected and throw CAMERA_DISCONNECTED if
        // cameraUser dies during setup.
        deviceImpl.setRemoteDevice(cameraUser); //將 CameraDeviceClient 設置到 CameraDeviceImpl 中進行管理。
        device = deviceImpl;
    }

    return device;
}

 (2)CameraDeviceImpl : /frameworks/base/core/java/android/hardware/camera2/Impl/CameraDeviceImpl.java

  在繼續向下分析打開相機流程以前,先簡單看看調用到的 CameraDeviceImpl 中的setRemoteDevice 方法,主要是將獲取到的遠端設備保存起來:

/**
 * Set remote device, which triggers initial onOpened/onUnconfigured callbacks
 *
 * <p>This function may post onDisconnected and throw CAMERA_DISCONNECTED if remoteDevice dies
 * during setup.</p>
 *
 */
public void setRemoteDevice(ICameraDeviceUser remoteDevice) throws CameraAccessException {
    synchronized(mInterfaceLock) {
        // TODO: Move from decorator to direct binder-mediated exceptions
        // If setRemoteFailure already called, do nothing
        if (mInError) return;

        mRemoteDevice = new ICameraDeviceUserWrapper(remoteDevice); //經過 ICameraDeviceUserWrapper 給遠端設備實例加上一層封裝。

        IBinder remoteDeviceBinder = remoteDevice.asBinder(); //使用 Binder 機制的一些基本設置。
        // For legacy camera device, remoteDevice is in the same process, and
        // asBinder returns NULL.
        if (remoteDeviceBinder != null) {
            try {
                remoteDeviceBinder.linkToDeath(this, /*flag*/ 0); //若是這個binder消失,爲標誌信息註冊一個接收器。
            } catch (RemoteException e) {
                CameraDeviceImpl.this.mDeviceHandler.post(mCallOnDisconnected);

                throw new CameraAccessException(CameraAccessException.CAMERA_DISCONNECTED,
                        "The camera device has encountered a serious error");
            }
        }

        mDeviceHandler.post(mCallOnOpened); //需此處觸發 onOpened 與 onUnconfigured 這兩個回調,每一個回調都是經過 mDeviceHandler 啓用一個新線程來調用的。
        mDeviceHandler.post(mCallOnUnconfigured);
    }
}

 (3)Runtime:經過 Binder 機制,咱們遠端調用了 connectDevice 方法(在 C++ 中稱爲函數,但說成方法可能更順口一些),這個方法實如今 CameraService 類中。

 (4)CameraService:/frameworks/av/services/camera/libcameraservice/CameraService.cpp

Status CameraService::connectDevice(
        const sp<hardware::camera2::ICameraDeviceCallbacks>& cameraCb,
        const String16& cameraId,
        const String16& clientPackageName,
        int clientUid,
        /*out*/
        sp<hardware::camera2::ICameraDeviceUser>* device) {

    ATRACE_CALL();
    Status ret = Status::ok();
    String8 id = String8(cameraId);
    sp<CameraDeviceClient> client = nullptr;

   //此處調用的 connectHelper 方法才真正實現了鏈接邏輯(HAL1 時最終也調用到這個方法)。須要注意的是,設定的模板類型是 ICameraDeviceCallbacks 以及 CameraDeviceClient。
    ret = connectHelper<hardware::camera2::ICameraDeviceCallbacks,CameraDeviceClient>(cameraCb, id,
            CAMERA_HAL_API_VERSION_UNSPECIFIED, clientPackageName,
            clientUid, USE_CALLING_PID, API_2,
            /*legacyMode*/ false, /*shimUpdateOnly*/ false,
            /*out*/client);

    if(!ret.isOk()) {
        logRejected(id, getCallingPid(), String8(clientPackageName),
                ret.toString8());
        return ret;
    }

    *device = client; //client 指向的類型是 CameraDeviceClient,其實例則是最終的返回結果。
    return ret;
}

  connectHelper 內容較多,忽略掉咱們還無需關注的地方分析:

template<class CALLBACK, class CLIENT>
Status CameraService::connectHelper(const sp<CALLBACK>& cameraCb, const String8& cameraId,
        int halVersion, const String16& clientPackageName, int clientUid, int clientPid,
        apiLevel effectiveApiLevel, bool legacyMode, bool shimUpdateOnly,
        /*out*/sp<CLIENT>& device) {
    binder::Status ret = binder::Status::ok();

    String8 clientName8(clientPackageName);

    /* Do something in */
    ......
    /* Do something out */

        sp<BasicClient> tmp = nullptr;
        //調用 makeClient 生成 CameraDeviceClient 實例。
        if(!(ret = makeClient(this, cameraCb, clientPackageName, cameraId, facing, clientPid,
                clientUid, getpid(), legacyMode, halVersion, deviceVersion, effectiveApiLevel,
                /*out*/&tmp)).isOk()) {
            return ret;
        }
        //初始化 CLIENT 實例。注意此處的模板類型 CLIENT 便是 CameraDeviceClient,傳入的參數 mCameraProviderManager 則是與 HAL service 有關。 
        client = static_cast<CLIENT*>(tmp.get());

        LOG_ALWAYS_FATAL_IF(client.get() == nullptr, "%s: CameraService in invalid state",
                __FUNCTION__);

        err = client->initialize(mCameraProviderManager);

    /* Do something in */
    ......
    /* Do something out */

    // Important: release the mutex here so the client can call back into the service from its
    // destructor (can be at the end of the call)
    device = client;
    return ret;
}    

  makeClient 主要是根據 API 版本以及 HAL 版原本選擇生成具體的 Client 實例,Client 就沿着前面分析下來的路徑返回到 CameraDeviceImpl 實例中,被保存到 mRemoteDevice。

Status CameraService::makeClient(const sp<CameraService>& cameraService,
        const sp<IInterface>& cameraCb, const String16& packageName, const String8& cameraId,
        int facing, int clientPid, uid_t clientUid, int servicePid, bool legacyMode,
        int halVersion, int deviceVersion, apiLevel effectiveApiLevel,
        /*out*/sp<BasicClient>* client) {

    if (halVersion < 0 || halVersion == deviceVersion) {
        // Default path: HAL version is unspecified by caller, create CameraClient
        // based on device version reported by the HAL.
        switch(deviceVersion) {
          case CAMERA_DEVICE_API_VERSION_1_0:
            /* Do something in */
            ......
            /* Do something out */
          case CAMERA_DEVICE_API_VERSION_3_0:
          case CAMERA_DEVICE_API_VERSION_3_1:
          case CAMERA_DEVICE_API_VERSION_3_2:
          case CAMERA_DEVICE_API_VERSION_3_3:
          case CAMERA_DEVICE_API_VERSION_3_4:
            if (effectiveApiLevel == API_1) { // Camera1 API route
                sp<ICameraClient> tmp = static_cast<ICameraClient*>(cameraCb.get());
                *client = new Camera2Client(cameraService, tmp, packageName, cameraIdToInt(cameraId),
                        facing, clientPid, clientUid, servicePid, legacyMode);
            } else { // Camera2 API route : 實例化了 CameraDeviceClient 類做爲 Client(注意此處構造傳入了 ICameraDeviceCallbacks,這是鏈接到 CameraDeviceImpl 的遠端回調)
                sp<hardware::camera2::ICameraDeviceCallbacks> tmp =
                        static_cast<hardware::camera2::ICameraDeviceCallbacks*>(cameraCb.get());
                *client = new CameraDeviceClient(cameraService, tmp, packageName, cameraId,
                        facing, clientPid, clientUid, servicePid);
            }
            break;
          default:
            // Should not be reachable
            ALOGE("Unknown camera device HAL version: %d", deviceVersion);
            return STATUS_ERROR_FMT(ERROR_INVALID_OPERATION,
                    "Camera device \"%s\" has unknown HAL version %d",
                    cameraId.string(), deviceVersion);
        }
    } else {
        /* Do something in */
        ......
        /* Do something out */
    }
    return Status::ok();
}

  至此,打開相機流程中,從 App 到 CameraService 的調用邏輯基本上就算走完了。

  簡圖總結:

  

  Ps:

  • CameraManagerGlobal 是真正的實現層,它與 JAVA 層的 CameraService 建立鏈接,從而建立相機的連路。
  • CameraDeviceImpl 至關於運行上下文,它取代了 Android N 以前的 JNI 層。

 3.從 CameraService 到 HAL Service

  因爲 Android O 中加入了 Treble 機制,CameraServer 一端主體爲 CameraService,它將會尋找現存的 Provider service,將其加入到內部的 CameraProviderManager 中進行管理,相關操做都是經過遠端調用進行的。
  而 Provider service 一端的主體爲 CameraProvider,它在初始化時就已經鏈接到 libhardware 的 Camera HAL 實現層,並以 CameraModule 來進行管理。
  進程的啓動後,連路的 「載體」 就搭建完成了(須要注意,此時 QCamera3HWI 還未建立),可用下圖簡單表示:
  

  

   而在打開相機時,該層的完整連路會被建立出來,主要調用邏輯以下圖:

  

 

    上回講到,在 CameraService::makeClient 中,實例化了一個 CameraDeviceClient。如今咱們就從它的構造函數開始,繼續探索打開相機的流程。
    這一部分主要活動在 Runtime 層,這裏分紅 CameraService 與 HAL Service 兩側來分析。


  (1)CameraDeviceClient :frameworks\av\services\camera\libcameraservice\api2\CameraDeviceClient.cpp

CameraDeviceClient::CameraDeviceClient(const sp<CameraService>& cameraService,
        const sp<hardware::camera2::ICameraDeviceCallbacks>& remoteCallback,
        const String16& clientPackageName,
        const String8& cameraId,
        int cameraFacing,
        int clientPid,
        uid_t clientUid,
        int servicePid) :
    Camera2ClientBase(cameraService, remoteCallback, clientPackageName,
                cameraId, cameraFacing, clientPid, clientUid, servicePid),  //繼承它的父類 Camera2ClientBase 
    mInputStream(),
    mStreamingRequestId(REQUEST_ID_NONE),
    mRequestIdCounter(0),
    mPrivilegedClient(false) {

    char value[PROPERTY_VALUE_MAX];
    property_get("persist.camera.privapp.list", value, "");
    String16 packagelist(value);
    if (packagelist.contains(clientPackageName.string())) {
        mPrivilegedClient = true;
    }

    ATRACE_CALL();
    ALOGI("CameraDeviceClient %s: Opened", cameraId.string());
}

  CameraService 在建立 CameraDeviceClient 以後,會調用它的初始化函數:

//對外提供調用的初始化函數接口 initialize。
status_t CameraDeviceClient::initialize(sp<CameraProviderManager> manager) {
    return initializeImpl(manager);
}

//初始化的具體實現函數,模板 TProviderPtr 在此處便是 CameraProviderManager 類。
template<typename TProviderPtr>
//首先將父類初始化,注意此處傳入了 CameraProviderManager。
status_t CameraDeviceClient::initializeImpl(TProviderPtr providerPtr) {
    ATRACE_CALL();
    status_t res;

    res = Camera2ClientBase::initialize(providerPtr);
    if (res != OK) {
        return res;
    }

    //這裏是關於 FrameProcessor 的建立與初始化配置等等
    String8 threadName;
    mFrameProcessor = new FrameProcessorBase(mDevice);
    threadName = String8::format("CDU-%s-FrameProc", mCameraIdStr.string());
    mFrameProcessor->run(threadName.string());

    mFrameProcessor->registerListener(FRAME_PROCESSOR_LISTENER_MIN_ID,
                                      FRAME_PROCESSOR_LISTENER_MAX_ID,
                                      /*listener*/this,
                                      /*sendPartials*/true);

    return OK;
}

   (2)Camera2ClientBase:frameworks\av\services\camera\libcameraservice\common\Camera2ClientBase.cpp

template <typename TClientBase> //模板 TClientBase,在 CameraDeviceClient 繼承 Camera2ClientBase 時被指定爲 CameraDeviceClientBase。
Camera2ClientBase<TClientBase>::Camera2ClientBase( //構造的相關參數,以及初始化列表,這裏面須要注意 TCamCallbacks 在 CameraDeviceClientBase 中被指定爲了 ICameraDeviceCallbacks。 
        const sp<CameraService>& cameraService,
        const sp<TCamCallbacks>& remoteCallback,
        const String16& clientPackageName,
        const String8& cameraId,
        int cameraFacing,
        int clientPid,
        uid_t clientUid,
        int servicePid):
        TClientBase(cameraService, remoteCallback, clientPackageName,
                cameraId, cameraFacing, clientPid, clientUid, servicePid),
        mSharedCameraCallbacks(remoteCallback),
        mDeviceVersion(cameraService->getDeviceVersion(TClientBase::mCameraIdStr)),
        mDeviceActive(false)
{
    ALOGI("Camera %s: Opened. Client: %s (PID %d, UID %d)", cameraId.string(),
            String8(clientPackageName).string(), clientPid, clientUid);

    mInitialClientPid = clientPid;
    mDevice = new Camera3Device(cameraId); //建立了一個 Camera3Device。
    LOG_ALWAYS_FATAL_IF(mDevice == 0, "Device should never be NULL here.");
}

  回去再看看初始化函數:

template <typename TClientBase> //初始化函數接口,真正的實現部分在 initializeImpl 中。
status_t Camera2ClientBase<TClientBase>::initialize(sp<CameraProviderManager> manager) {
    return initializeImpl(manager);
}

//TClientBase 對應 CameraDeviceClientBase,而 TProviderPtr 對應的是 CameraProviderManager。
template <typename TClientBase>
template <typename TProviderPtr>
status_t Camera2ClientBase<TClientBase>::initializeImpl(TProviderPtr providerPtr) {
    ATRACE_CALL();
    ALOGV("%s: Initializing client for camera %s", __FUNCTION__,
          TClientBase::mCameraIdStr.string());
    status_t res;

    // Verify ops permissions
    res = TClientBase::startCameraOps(); //調用 CameraDeviceClientBase 的 startCameraOps 方法,檢查 ops 的權限。
    if (res != OK) {
        return res;
    }

    if (mDevice == NULL) {
        ALOGE("%s: Camera %s: No device connected",
                __FUNCTION__, TClientBase::mCameraIdStr.string());
        return NO_INIT;
    }

    res = mDevice->initialize(providerPtr); //初始化 Camera3Device 的實例,注意此處傳入了 CameraProviderManager。
    if (res != OK) {
        ALOGE("%s: Camera %s: unable to initialize device: %s (%d)",
                __FUNCTION__, TClientBase::mCameraIdStr.string(), strerror(-res), res);
        return res;
    }

   //在 Camera3Device 實例中設置 Notify 回調。
    wp<CameraDeviceBase::NotificationListener> weakThis(this);
    res = mDevice->setNotifyCallback(weakThis);

    return OK;
}

  (3)Camera3Device:frameworks\av\services\camera\libcameraservice\device3\Camera3Device.cpp

Camera3Device::Camera3Device(const String8 &id):
        mId(id),
        mOperatingMode(NO_MODE),
        mIsConstrainedHighSpeedConfiguration(false),
        mStatus(STATUS_UNINITIALIZED),
        mStatusWaiters(0),
        mUsePartialResult(false),
        mNumPartialResults(1),
        mTimestampOffset(0),
        mNextResultFrameNumber(0),
        mNextReprocessResultFrameNumber(0),
        mNextShutterFrameNumber(0),
        mNextReprocessShutterFrameNumber(0),
        mListener(NULL),
        mVendorTagId(CAMERA_METADATA_INVALID_VENDOR_ID)
{
    ATRACE_CALL();
  //在這個觀察構造函數中設定了兩個回調接口:
    camera3_callback_ops::notify = &sNotify;
    camera3_callback_ops::process_capture_result = &sProcessCaptureResult;
    ALOGV("%s: Created device for camera %s", __FUNCTION__, mId.string());
}

  其初始化函數篇幅較長,這裏省略掉了關於 RequestMetadataQueue 的相關操做。

status_t Camera3Device::initialize(sp<CameraProviderManager> manager) {
    ATRACE_CALL();
    Mutex::Autolock il(mInterfaceLock);
    Mutex::Autolock l(mLock);

    ALOGV("%s: Initializing HIDL device for camera %s", __FUNCTION__, mId.string());
    if (mStatus != STATUS_UNINITIALIZED) {
        CLOGE("Already initialized!");
        return INVALID_OPERATION;
    }
    if (manager == nullptr) return INVALID_OPERATION;

    sp<ICameraDeviceSession> session;
    ATRACE_BEGIN("CameraHal::openSession");
    status_t res = manager->openSession(mId.string(), this, //調用CameraProviderManager的openSession方法,開啓了遠端的Session
            /*out*/ &session);
    ATRACE_END();
    if (res != OK) {
        SET_ERR_L("Could not open camera session: %s (%d)", strerror(-res), res);
        return res;
    }

    /* Do something in */
    ......
    /* Do something out */

    return initializeCommonLocked();
}

  (4)CameraProviderManager:frameworks\av\services\camera\libcameraservice\common\CameraProviderManager.cpp

status_t CameraProviderManager::openSession(const std::string &id,
        const sp<hardware::camera::device::V3_2::ICameraDeviceCallback>& callback,
        /*out*/
        sp<hardware::camera::device::V3_2::ICameraDeviceSession> *session) {

    std::lock_guard<std::mutex> lock(mInterfaceMutex);

    auto deviceInfo = findDeviceInfoLocked(id, //首先調用 findDeviceInfoLocked,獲取 HAL3 相關的 DeviceInfo3
            /*minVersion*/ {3,0}, /*maxVersion*/ {4,0});
    if (deviceInfo == nullptr) return NAME_NOT_FOUND;

    auto *deviceInfo3 = static_cast<ProviderInfo::DeviceInfo3*>(deviceInfo);

    Status status;
    hardware::Return<void> ret;
   //經過遠端調用 CameraDevice 的 open 方法,建立 CameraDeviceSession 實例並將其本地調用接口經過入參 session 返回。
    ret = deviceInfo3->mInterface->open(callback, [&status, &session]
            (Status s, const sp<device::V3_2::ICameraDeviceSession>& cameraSession) {
                status = s;
                if (status == Status::OK) {
                    *session = cameraSession;
                }
            });
    if (!ret.isOk()) {
        ALOGE("%s: Transaction error opening a session for camera device %s: %s",
                __FUNCTION__, id.c_str(), ret.description().c_str());
        return DEAD_OBJECT;
    }
    return mapToStatusT(status);
}

  (5)CameraDevice:hardware\interfaces\camera\device\3.2\default\CameraDevice.cpp

  CameraDevice 的實例實際上在初始化 HAL Service 以後就存在了。 前面說到,經過 CameraProviderManager 中的 deviceInfo 接口,調用遠端 CameraDevice 實例open 方法,下面就來看看它的代碼實現:

Return<void> CameraDevice::open(const sp<ICameraDeviceCallback>& callback, open_cb _hidl_cb)  {
    Status status = initStatus();
    sp<CameraDeviceSession> session = nullptr;

    if (callback == nullptr) {
        ALOGE("%s: cannot open camera %s. callback is null!",
                __FUNCTION__, mCameraId.c_str());
        _hidl_cb(Status::ILLEGAL_ARGUMENT, nullptr);
        return Void();
    }

    if (status != Status::OK) {
        /* Do something in */
        ......
        /* Do something out */
    } else {
        mLock.lock();

        /* Do something in */
        ......
        /* Do something out */

        /** Open HAL device */
        status_t res;
        camera3_device_t *device;

        ATRACE_BEGIN("camera3->open");
        res = mModule->open(mCameraId.c_str(), //注意 mModule 是在 HAL Service 初始化時就已經配置好的,它對從libhardware庫中加載的 Camera HAL 接口進行了一層封裝,從這裏往下就會一路走到 QCamera3HWI 的構造流程去。
                reinterpret_cast<hw_device_t**>(&device));
        ATRACE_END();

        /* Do something in */
        ......
        /* Do something out */

     //建立 session 並讓內部成員 mSession 持有,具體實現的函數爲 creatSession。
        session = createSession(
                device, info.static_camera_characteristics, callback);

        /* Do something in */
        ......
        /* Do something out */

        mSession = session;

        IF_ALOGV() {
            session->getInterface()->interfaceChain([](
                ::android::hardware::hidl_vec<::android::hardware::hidl_string> interfaceChain) {
                    ALOGV("Session interface chain:");
                    for (auto iface : interfaceChain) {
                        ALOGV("  %s", iface.c_str());
                    }
                });
        }
        mLock.unlock();
    }
    _hidl_cb(status, session->getInterface());
    return Void();
}

  而 creatSession 中直接建立了一個 CameraDeviceSession。固然在其構造函數中會調用內部的初始化函數,而後會進入 HAL 接口層 QCamera3HWI 的初始化流程,至此,從 CameraService 到 HAL Service 這一部分的打開相機流程就基本走通了。
  簡圖總結:

  

 

 4.從 HAL Service 到 Camera HAL

  在 HAL3 中,Camera HAL 的接口轉化層(以及流解析層)由 QCamera3HardwareInterface 擔當,而接口層與實現層與 HAL1 中基本沒什麼差異,都是在 mm_camera_interface.c 與 mm_camera.c 中。
  那麼接口轉化層的實例是什麼時候建立的,又是怎麼初始化的,建立它的時候,與接口層、實現層又有什麼交互?經過下圖展現的主要調用流程:

  

 

  

   (1)CameraModule(HAL Servic) : hardware\interfaces\camera\common\1.0\default\CameraModule.cpp

    上回說到,CameraDevice::open 的實現中,調用了 mModule->open,即 CameraModule::open,經過代碼來看,它作的事並很少,主要是調用 mModule->common.methods->open,來進入下一層級的流程。
    而這裏則須要注意了,open 是一個函數指針,它指向的是 QCamera2Factory 的 camera_device_open 方法,至於爲何和 QCamera2Factory 有關,這就要回頭看 HAL Service 的啓動初始化流程了。

int CameraModule::open(const char* id, struct hw_device_t** device) {
    int res;
    ATRACE_BEGIN("camera_module->open");
    res = filterOpenErrorCode(mModule->common.methods->open(&mModule->common, id, device));
    ATRACE_END();
    return res;
}

 

  (2)QCamera2Factory(Camera HAL):hardware\qcom\camera\qcamera2\QCamera2Factory.cpp

/*===========================================================================
 * FUNCTION   : camera_device_open
 *
 * DESCRIPTION: static function to open a camera device by its ID
 *
 * PARAMETERS :
 *   @camera_id : camera ID
 *   @hw_device : ptr to struct storing camera hardware device info
 *
 * RETURN     : int32_t type of status
 *              NO_ERROR  -- success
 *              none-zero failure code
 *==========================================================================*/
int QCamera2Factory::camera_device_open(
    const struct hw_module_t *module, const char *id,
    struct hw_device_t **hw_device)
{
    /* Do something in */
    ......
    /* Do something out */

#ifdef QCAMERA_HAL1_SUPPORT //注意到這裏經過宏定義添加了對 HAL1 的兼容操做。其實是要調用 cameraDeviceOpen 來進行下一步操做。
    if(gQCameraMuxer)
        rc =  gQCameraMuxer->camera_device_open(module, id, hw_device);
    else
#endif
        rc = gQCamera2Factory->cameraDeviceOpen(atoi(id), hw_device);
    return rc;
}

struct hw_module_methods_t QCamera2Factory::mModuleMethods = {
    .open = QCamera2Factory::camera_device_open, //這裏就將前面所說的 open 函數指針指定爲了 camera_device_open 這個方法。
};

  cameraDeviceOpen 的工做:

/*===========================================================================
 * FUNCTION   : cameraDeviceOpen
 *
 * DESCRIPTION: open a camera device with its ID
 *
 * PARAMETERS :
 *   @camera_id : camera ID
 *   @hw_device : ptr to struct storing camera hardware device info
 *
 * RETURN     : int32_t type of status
 *              NO_ERROR  -- success
 *              none-zero failure code
 *==========================================================================*/
int QCamera2Factory::cameraDeviceOpen(int camera_id,
                    struct hw_device_t **hw_device)
{
    /* Do something in */
    ......
    /* Do something out */

    if ( mHalDescriptors[camera_id].device_version == CAMERA_DEVICE_API_VERSION_3_0 ) {
        QCamera3HardwareInterface *hw = new QCamera3HardwareInterface(mHalDescriptors[camera_id].cameraId, //首先建立了 QCamera3HardwareInterface 的實例。
                mCallbacks);
        if (!hw) {
            LOGE("Allocation of hardware interface failed");
            return NO_MEMORY;
        }
        rc = hw->openCamera(hw_device); //調用實例的 openCamera 方法。
        if (rc != 0) {
            delete hw;
        }
    }

    /* Do something in */
    ......
    /* Do something out */

    return rc;
}

  (3)QCamera3HardwareInterface : hardware\qcom\camera\qcamera2\hal3\QCamera3HWI.cpp

  首先須要注意的是內部成員 mCameraOps 的定義。 在構造實例時,有 mCameraDevice.ops = &mCameraOps;(關鍵點)

 

camera3_device_ops_t QCamera3HardwareInterface::mCameraOps = {
    .initialize                         = QCamera3HardwareInterface::initialize,
    .configure_streams                  = QCamera3HardwareInterface::configure_streams,
    .register_stream_buffers            = NULL,
    .construct_default_request_settings = QCamera3HardwareInterface::construct_default_request_settings,
    .process_capture_request            = QCamera3HardwareInterface::process_capture_request,
    .get_metadata_vendor_tag_ops        = NULL,
    .dump                               = QCamera3HardwareInterface::dump,
    .flush                              = QCamera3HardwareInterface::flush,
    .reserved                           = {0},
};

  再來繼續看看 openCamera 實現:

int QCamera3HardwareInterface::openCamera(struct hw_device_t **hw_device)
{
    /* Do something in */
    ......
    /* Do something out */

    rc = openCamera(); //調用另外一個 openCamera 方法,這是具體實現的部分。
    if (rc == 0) {
        *hw_device = &mCameraDevice.common; //打開相機成功後,將設備結構中的 common 部分經過雙重指針 hw_device 返回。
    } else
        *hw_device = NULL;

    /* Do something in */
    ......
    /* Do something out */
    return rc;
}

int QCamera3HardwareInterface::openCamera()
{
    /* Do something in */
    ......
    /* Do something out */

    rc = camera_open((uint8_t)mCameraId, &mCameraHandle);  //這裏就開始進入接口層了,調用的是接口層中的 camera_open 接口。注意此處獲取到了 mCameraHandle.

    /* Do something in */
    ......
    /* Do something out */

    rc = mCameraHandle->ops->register_event_notify(mCameraHandle->camera_handle, //注意這裏傳入了一個 camEvtHandle
            camEvtHandle, (void *)this);

    /* Do something in */
    ......
    /* Do something out */ 

    rc = mCameraHandle->ops->get_session_id(mCameraHandle->camera_handle, 
        &sessionId[mCameraId]);

    /* Do something in */
    ......
    /* Do something out */

    return NO_ERROR;
}

  上面是接口轉化層中,關於 openCamera 的部分,下面繼續看看它的初始化函數。 在前面已經分析過,建立 CameraDeviceSession 實例時,會調用它內部的初始化方法,而這其中包含了調用 QCamera3HWI 的初始化方法 initialize

int QCamera3HardwareInterface::initialize(const struct camera3_device *device,
                                  const camera3_callback_ops_t *callback_ops)
{
    LOGD("E");
    QCamera3HardwareInterface *hw =
        reinterpret_cast<QCamera3HardwareInterface *>(device->priv);
    if (!hw) {
        LOGE("NULL camera device");
        return -ENODEV;
    }

    int rc = hw->initialize(callback_ops); //調用了真正實現的初始化邏輯的函數
    LOGD("X");
    return rc;
}

int QCamera3HardwareInterface::initialize(
        const struct camera3_callback_ops *callback_ops)
{
    ATRACE_CALL();
    int rc;

    LOGI("E :mCameraId = %d mState = %d", mCameraId, mState);
    pthread_mutex_lock(&mMutex);

    // Validate current state
    switch (mState) {
        case OPENED:
            /* valid state */
            break;
        default:
            LOGE("Invalid state %d", mState);
            rc = -ENODEV;
            goto err1;
    }

    rc = initParameters(); //參數(mParameters)初始化,注意這裏的參數和 CameraParameter 是不一樣的,它是 metadata_buffer 相關參數的結構。
    if (rc < 0) {
        LOGE("initParamters failed %d", rc);
        goto err1;
    }
    mCallbackOps = callback_ops; //這裏將 camera3_call_back_ops 與 mCallbackOps 關聯了起來。

    mChannelHandle = mCameraHandle->ops->add_channel( //獲取 mChannelHandle 這一句柄,調用的方法實際是 mm_camera_interface.c 中的 mm_camera_intf_add_channel。
            mCameraHandle->camera_handle, NULL, NULL, this);
    if (mChannelHandle == 0) {
        LOGE("add_channel failed");
        rc = -ENOMEM;
        pthread_mutex_unlock(&mMutex);
        return rc;
    }

    pthread_mutex_unlock(&mMutex);
    mCameraInitialized = true;
    mState = INITIALIZED;
    LOGI("X");
    return 0;

err1:
    pthread_mutex_unlock(&mMutex);
    return rc;
}

  (4)mm_camera_interface.c(接口層) :hardware\qcom\camera\qcamera2\stack\mm-camera-interface\src\mm_camera_interface.c

    camera_open 中乾的事也很少,省略掉了關於爲 cam_obj 分配內存以及初始化的部分。其實是調用實現層中的 mm_camera_open 來真正實現打開相機設備的操做,設備的各類信息都填充到 cam_obj 結構中。

int32_t camera_open(uint8_t camera_idx, mm_camera_vtbl_t **camera_vtbl)
{
    int32_t rc = 0;
    mm_camera_obj_t *cam_obj = NULL;

    /* Do something in */
    ......
    /* Do something out */

    rc = mm_camera_open(cam_obj);

    /* Do something in */
    ......
    /* Do something out */
}

    而關於初始化時調用的 mm_camera_intf_add_channel 代碼以下:

static uint32_t mm_camera_intf_add_channel(uint32_t camera_handle,
                                           mm_camera_channel_attr_t *attr,
                                           mm_camera_buf_notify_t channel_cb,
                                           void *userdata)
{
    uint32_t ch_id = 0;
    mm_camera_obj_t * my_obj = NULL;

    LOGD("E camera_handler = %d", camera_handle);
    pthread_mutex_lock(&g_intf_lock);
    my_obj = mm_camera_util_get_camera_by_handler(camera_handle);

    if(my_obj) {
        pthread_mutex_lock(&my_obj->cam_lock);
        pthread_mutex_unlock(&g_intf_lock);
        ch_id = mm_camera_add_channel(my_obj, attr, channel_cb, userdata); //經過調用實現層的 mm_camera_add_channel 來獲取一個 channel id,也就是其句柄。
    } else {
        pthread_mutex_unlock(&g_intf_lock);
    }
    LOGD("X ch_id = %d", ch_id);
    return ch_id;
}

  (5)mm_camera.c(實現層) :hardware\qcom\camera\qcamera2\stack\mm-camera-interface\src\mm_camera.c

   終於來到最底層的實現了,mm_camera_open 主要工做是填充 my_obj,而且啓動、初始化一些線程相關的東西,關於線程的部分我這裏就省略掉了。

int32_t mm_camera_open(mm_camera_obj_t *my_obj)
{
    char dev_name[MM_CAMERA_DEV_NAME_LEN];
    int32_t rc = 0;
    int8_t n_try=MM_CAMERA_DEV_OPEN_TRIES;
    uint8_t sleep_msec=MM_CAMERA_DEV_OPEN_RETRY_SLEEP;
    int cam_idx = 0;
    const char *dev_name_value = NULL;
    int l_errno = 0;
    pthread_condattr_t cond_attr;

    LOGD("begin\n");

    if (NULL == my_obj) {
        goto on_error;
    }
    dev_name_value = mm_camera_util_get_dev_name(my_obj->my_hdl); //此處調用的函數是爲了獲取 my_obj 的句柄,這裏不深刻分析。
    if (NULL == dev_name_value) {
        goto on_error;
    }
    snprintf(dev_name, sizeof(dev_name), "/dev/%s",
             dev_name_value);
    sscanf(dev_name, "/dev/video%d", &cam_idx);
    LOGD("dev name = %s, cam_idx = %d", dev_name, cam_idx);

    do{
        n_try--;
        errno = 0;
        my_obj->ctrl_fd = open(dev_name, O_RDWR | O_NONBLOCK); //讀取設備文件的文件描述符,存到 my_obj->ctrl_fd 中。
        l_errno = errno;
        LOGD("ctrl_fd = %d, errno == %d", my_obj->ctrl_fd, l_errno);
        if((my_obj->ctrl_fd >= 0) || (errno != EIO && errno != ETIMEDOUT) || (n_try <= 0 )) {
            break;
        }
        LOGE("Failed with %s error, retrying after %d milli-seconds",
              strerror(errno), sleep_msec);
        usleep(sleep_msec * 1000U);
    }while (n_try > 0);

    if (my_obj->ctrl_fd < 0) {
        LOGE("cannot open control fd of '%s' (%s)\n",
                  dev_name, strerror(l_errno));
        if (l_errno == EBUSY)
            rc = -EUSERS;
        else
            rc = -1;
        goto on_error;
    } else {
        mm_camera_get_session_id(my_obj, &my_obj->sessionid); //成功獲取到文件描述符後,就要獲取 session 的 id 了。
        LOGH("Camera Opened id = %d sessionid = %d", cam_idx, my_obj->sessionid);
    }

    /* Do something in */
    ......
    /* Do something out */

    /* unlock cam_lock, we need release global intf_lock in camera_open(),
     * in order not block operation of other Camera in dual camera use case.*/
    pthread_mutex_unlock(&my_obj->cam_lock);
    return rc;
}

  初始化的相關部分,mm_camera_add_channel 代碼以下:

uint32_t mm_camera_add_channel(mm_camera_obj_t *my_obj,
                               mm_camera_channel_attr_t *attr,
                               mm_camera_buf_notify_t channel_cb,
                               void *userdata)
{
    mm_channel_t *ch_obj = NULL;
    uint8_t ch_idx = 0;
    uint32_t ch_hdl = 0;

   //從現有的 Channel 中找到第一個狀態爲 NOTUSED 的,獲取到 ch_obj 中
    for(ch_idx = 0; ch_idx < MM_CAMERA_CHANNEL_MAX; ch_idx++) {
        if (MM_CHANNEL_STATE_NOTUSED == my_obj->ch[ch_idx].state) {
            ch_obj = &my_obj->ch[ch_idx];
            break;
        }
    }

  /*初始化 ch_obj 結構。首先調用 mm_camera_util_generate_handler 爲其生成一個句柄(也是該函數的返回值),
   *而後將狀態設置爲 STOPPED,注意這裏還保存了 my_obj 的指針及其 session id,最後調用 mm_channel_init 完成了 Channel 的初始化。*/
    if (NULL != ch_obj) {
        /* initialize channel obj */
        memset(ch_obj, 0, sizeof(mm_channel_t));
        ch_hdl = mm_camera_util_generate_handler(ch_idx);
        ch_obj->my_hdl = ch_hdl;
        ch_obj->state = MM_CHANNEL_STATE_STOPPED;
        ch_obj->cam_obj = my_obj;
        pthread_mutex_init(&ch_obj->ch_lock, NULL);
        ch_obj->sessionid = my_obj->sessionid;
        mm_channel_init(ch_obj, attr, channel_cb, userdata);
    }

    pthread_mutex_unlock(&my_obj->cam_lock);

    return ch_hdl;
}

  簡圖總結:

 

    總而言之,上面這一頓操做下來後,相機從上到下的整個連路就已經打通,接下來應該只要 APP 按照流程下發 Preview 的 Request 就能夠開始獲取預覽數據了。

 

3、核心概念:Request

  request是貫穿camera2數據處理流程最爲重要的概念,應用框架是經過向camera子系統發送request來獲取其想要的result。
  request有下述幾個重要特徵:

  •     一個request能夠對應一系列的result。
  •     request應當包含全部必要的配置信息,存放於metadata中。如:分辨率和像素格式;sensor、鏡頭、閃光等的控制信息;3A 操做模式;RAW 到 YUV 處理控件;以及統計信息的生成等。
  •     request須要攜帶對應的surface(也就是框架裏面的stream),用於接收返回的圖像。
  •     多個request能夠同時處於in-flight狀態,而且submit request是non-blocking方式的。也就是說,上一個request沒有處理完,也能夠submit新的request。
  •     隊列中request的處理老是按照FIFO的形式。
  •     snapshot的request比preview的request擁有更高的優先級。

 1.request的總體處理流程以下圖:
  

  

open 流程(黑色箭頭線條)
    CameraManager註冊AvailabilityCallback回調,用於接收相機設備的可用性狀態變動的通知。
    CameraManager經過調用getCameraIdList()獲取到當前可用的camera id,經過getCameraCharacteristcs()函數獲取到指定相機設備的特性。
    CameraManager調用openCamera()打開指定相機設備,並返回一個CameraDevice對象,後續經過該CameraDevice對象操控具體的相機設備。
    使用CameraDevice對象的createCaptureSession()建立一個session,數據請求(預覽、拍照等)都是經過session進行。在建立session時,須要提供Surface做爲參數,用於接收返回的圖像。

configure stream流程(藍色箭頭線條)
    申請Surface,如上圖的OUTPUT STREAMS DESTINATIONS框,用於在建立session時做爲參數,接收session返回的圖像。
    建立session後,surface會被配置成框架的stream。在框架中,stream定義了圖像的size及format。
    每一個request都須要攜帶target surface用於指定返回的圖像是歸屬到哪一個被configure的stream的。
 request處理流程(橙色箭頭線條)
    CameraDevice對象經過createCaptureRequest()來建立request,每一個reqeust都須要有surface和settings(settings就是metadata,request包含的全部配置信息都是放在metadata中的)。
    使用session的capture()、captureBurst()、setStreamingRequest()、setStreamingBurst()等api能夠將request發送到框架。
    預覽的request,經過setStreamingRequest()、setStreamingBurst()發送,僅調用一次。將request set到repeating request list裏面。只要pending request queue裏面沒有request,就將repeating list裏面的request copy到pending queue裏面。
    拍照的request,經過capture()、captureBurst()發送,每次須要拍照都會調用。每次觸發,都會直接將request入到pending request queue裏面,因此拍照的request比預覽的request的優先級更高。
    in-progress queue表明當前正在處理的request的queue,每處理完一個,都會從pending queue裏面拿出來一個新的request放到這裏。

數據返回流程(紫色箭頭線條)
    硬件層面返回的數據會放到result裏面返回,會經過session的capture callback回調響應。

 2.request在HAL的處理方式

  (1)framework發送異步的request到hal。
  (2)hal必須順序處理request,對於每個request都要返回timestamp(shutter,也就是幀的生成時間)、metadata、image buffers。
  (3)對於request引用的每一類steam,必須按FIFO的方式返回result。好比:對於預覽的stream,result id 9必需要先於result id 10返回。可是拍照的stream,當前能夠只返回到result id 7,由於拍照和預覽用的stream不同。
  (4)hal須要的信息都經過request攜帶的metadata接收,hal須要返回的信息都經過result攜帶的metadata返回。

  HAL處理request的總體流程以下圖。
  

  

request處理流程(黑色箭頭線條)
    framework異步地submit request到hal,hal依次處理,並返回result。
    每一個被submit到hal的request都必須攜帶stream。stream分爲input stream和output stream:input stream對應的buffer是已有圖像數據的buffer,hal對這些buffer進行reprocess;output stream對應的buffer是empty buffer,hal將生成的圖像數據填充的這些buffer裏面。

input stream處理流程(圖像的INPUT STREAM 1
    request攜帶input stream及input buffer到hal。
    hal進行reprocess,而後新的圖像數據從新填充到buffer裏面,返回到framework。

output stream處理流程(圖像的OUTPUT STREAM 1…N)
    request攜帶output stream及output buffer到hal。
    hal通過一系列模塊的的處理,將圖像數據寫到buffer中,返回到frameowork。

 

 

-end-

相關文章
相關標籤/搜索