網絡七層由下往上分別爲物理層、數據鏈路層、網絡層、傳輸層、會話層、表示層和應用層。linux
其中物理層、數據鏈路層和網絡層一般被稱做媒體層,是網絡工程師所研究的對象;服務器
傳輸層、會話層、表示層和應用層則被稱做主機層,是用戶所面向和關心的內容。網絡
http協議對應於應用層併發
tcp協議對應於傳輸層dom
ip協議對應於網絡層socket
三者本質上沒有可比性。 況且HTTP協議是基於TCP鏈接的。tcp
TCP/IP是傳輸層協議,主要解決數據如何在網絡中傳輸;而HTTP是應用層協議,主要解決如何包裝數據。函數
我 們在傳輸數據時,能夠只使用傳輸層(TCP/IP),可是那樣的話,因爲沒有應用層,便沒法識別數據內容,若是想要使傳輸的數據有意義,則必須使用應用層 協議,應用層協議不少,有HTTP、FTP、TELNET等等,也能夠本身定義應用層協議。WEB使用HTTP做傳輸層協議,以封裝HTTP文本信息,然 後使用TCP/IP作傳輸層協議將它發送到網絡上。Socket是對TCP/IP協議的封裝,Socket自己並非協議,而是一個調用接口(API),經過Socket,咱們才能使用TCP/IP協議。ui
相信很多初學手機聯網開發的朋友都想知道Http與Socket鏈接究竟有什麼區別,但願經過本身的淺顯理解能對初學者有所幫助。spa
2.一、TCP鏈接
要想明白Socket鏈接,先要明白TCP鏈接。手機可以使用聯網功能是由於手機底層實現了TCP/IP協議,可使手機終端經過無線網絡創建TCP鏈接。TCP協議能夠對上層網絡提供接口,使上層網絡數據的傳輸創建在「無差異」的網絡之上。
創建起一個TCP鏈接須要通過「三次握手」:
第一次握手:客戶端發送syn包(syn=j)到服務器,並進入SYN_SEND狀態,等待服務器確認;
第二次握手:服務器收到syn包,必須確認客戶的SYN(ack=j+1),同時本身也發送一個SYN包(syn=k),即SYN+ACK包,此時服務器進入SYN_RECV狀態;
第三次握手:客戶端收到服務器的SYN+ACK包,向服務器發送確認包ACK(ack=k+1),此包發送完畢,客戶端和服務器進入ESTABLISHED狀態,完成三次握手。
握手過程當中傳送的包裏不包含數據,三次握手完畢後,客戶端與服務器才正式開始傳送數據。理想狀態下,TCP鏈接一旦創建,在通訊雙方中的任何一方主動關閉連
接以前,TCP鏈接都將被一直保持下去。斷開鏈接時服務器和客戶端都可以主動發起斷開TCP鏈接的請求,斷開過程須要通過「四次握手」
戶端交互,最終肯定斷開)
HTTP協議即超文本傳送協議(HypertextTransfer Protocol ),是Web聯網的基礎,也是手機聯網經常使用的協議之一,HTTP協議是創建在TCP協議之上的一種應用。
HTTP鏈接最顯著的特色是客戶端發送的每次請求都須要服務器回送響應,在請求結束後,會主動釋放鏈接。從創建鏈接到關閉鏈接的過程稱爲「一次鏈接」。
1)在HTTP 1.0中,客戶端的每次請求都要求創建一次單獨的鏈接,在處理完本次請求後,就自動釋放鏈接。
2)在HTTP 1.1中則能夠在一次鏈接中處理多個請求,而且多個請求能夠重疊進行,不須要等待一個請求結束後再發送下一個請求。
由
於HTTP在每次請求結束後都會主動釋放鏈接,所以HTTP鏈接是一種「短鏈接」,要保持客戶端程序的在線狀態,須要不斷地向服務器發起鏈接請求。一般的
作法是即時不須要得到任何數據,客戶端也保持每隔一段固定的時間向服務器發送一
次「保持鏈接」的請求,服務器在收到該請求後對客戶端進行回覆,代表知道客
戶端「在線」。若服務器長時間沒法收到客戶端的請求,則認爲客戶端「下線」,若客戶端長時間沒法收到服務器的回覆,則認爲網絡已經斷開。
套接字(socket)是通訊的基石,是支持TCP/IP協議的網絡通訊的基本操做單元。它是網絡通訊過程當中端點的抽象表示,包含進行網絡通訊必須的五種信息:鏈接使用的協議,本地主機的IP地址,本地進程的協議端口,遠地主機的IP地址,遠地進程的協議端口。
應
用層經過傳輸層進行數據通訊時,TCP會遇到同時爲多個應用程序進程提供併發服務的問題。多個TCP鏈接或多個應用程序進程可能須要經過同一個
TCP協議端口傳輸數據。爲了區別不一樣的應用程序進程和鏈接,許多計算機操做系統爲應用程序與TCP/IP協議交互提供了套接字(Socket)接口。應
用層能夠和傳輸層經過Socket接口,區分來自不一樣應用程序進程或網絡鏈接的通訊,實現數據傳輸的併發服務。
創建Socket鏈接至少須要一對套接字,其中一個運行於客戶端,稱爲ClientSocket,另外一個運行於服務器端,稱爲ServerSocket。
套接字之間的鏈接過程分爲三個步驟:服務器監聽,客戶端請求,鏈接確認。
服務器監聽:服務器端套接字並不定位具體的客戶端套接字,而是處於等待鏈接的狀態,實時監控網絡狀態,等待客戶端的鏈接請求。
客戶端請求:指客戶端的套接字提出鏈接請求,要鏈接的目標是服務器端的套接字。爲此,客戶端的套接字必須首先描述它要鏈接的服務器的套接字,指出服務器端套接字的地址和端口號,而後就向服務器端套接字提出鏈接請求。
連
接確認:當服務器端套接字監聽到或者說接收到客戶端套接字的鏈接請求時,就響應客戶端套接字的請求,創建一個新的線程,把服務器端套接字的描述發給客戶
端,一旦客戶端確認了此描述,雙方就正式創建鏈接。而服務器端套接字繼續處於監聽狀態,繼續接收其餘客戶端套接字的鏈接請求。
建立Socket鏈接時,能夠指定使用的傳輸層協議,Socket能夠支持不一樣的傳輸層協議(TCP或UDP),當使用TCP協議進行鏈接時,該Socket鏈接就是一個TCP鏈接。
由
於一般狀況下Socket鏈接就是TCP鏈接,所以Socket鏈接一旦創建,通訊雙方便可開始相互發送數據內容,直到雙方鏈接斷開。但在實際網絡應用
中,客戶端到服務器之間的通訊每每須要穿越多箇中間節點,例如路由器、網關、防火牆等,大部分防火牆默認會關閉長時間處於非活躍狀態的鏈接而致使
Socket 鏈接斷連,所以須要經過輪詢告訴網絡,該鏈接處於活躍狀態。
而HTTP鏈接使用的是「請求—響應」的方式,不只在請求時須要先創建鏈接,並且須要客戶端向服務器發出請求後,服務器端才能回覆數據。
很
多狀況下,須要服務器端主動向客戶端推送數據,保持客戶端與服務器數據的實時與同步。此時若雙方創建的是Socket鏈接,服務器就能夠直接將數據傳送給
客戶端;若雙方創建的是HTTP鏈接,則服務器須要等到客戶端發送一次請求後才能將數據傳回給客戶端,所以,客戶端定時向服務器端發送鏈接請求,不只能夠
保持在線,同時也是在「詢問」服務器是否有新的數據,若是有就將數據傳給客戶端。
既然socket是「open—write/read—close」模式的一種實現,那麼socket就提供了這些操做對應的函數接口。下面以TCP爲例,介紹幾個基本的socket接口函數。
3.4.一、socket()函數
int socket(int domain, int type, int protocol);
socket函數對應於普通文件的打開操做。普通文件的打開操做返回一個文件描述字,而socket()用於建立一個socket描述符(socket descriptor),它惟一標識一個socket。這個socket描述字跟文件描述字同樣,後續的操做都有用到它,把它做爲參數,經過它來進行一些讀寫操做。
正如能夠給fopen的傳入不一樣參數值,以打開不一樣的文件。建立socket的時候,也能夠指定不一樣的參數建立不一樣的socket描述符,socket函數的三個參數分別爲:
注意:並非上面的type和protocol能夠隨意組合的,如SOCK_STREAM不能夠跟IPPROTO_UDP組合。當protocol爲0時,會自動選擇type類型對應的默認協議。
當咱們調用socket建立一個socket時,返回的socket描述字它存在於協議族(address family,AF_XXX)空間中,但沒有一個具體的地址。若是想要給它賦值一個地址,就必須調用bind()函數,不然就當調用connect()、listen()時系統會自動隨機分配一個端口。
3.4.二、bind()函數
正如上面所說bind()函數把一個地址族中的特定地址賦給socket。例如對應AF_INET、AF_INET6就是把一個ipv4或ipv6地址和端口號組合賦給socket。
int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
函數的三個參數分別爲:
struct sockaddr_in { sa_family_t sin_family; /* address family: AF_INET */ in_port_t sin_port; /* port in network byte order */ struct in_addr sin_addr; /* internet address */ }; /* Internet address. */ struct in_addr { uint32_t s_addr; /* address in network byte order */ };
struct sockaddr_in6 { sa_family_t sin6_family; /* AF_INET6 */ in_port_t sin6_port; /* port number */ uint32_t sin6_flowinfo; /* IPv6 flow information */ struct in6_addr sin6_addr; /* IPv6 address */ uint32_t sin6_scope_id; /* Scope ID (new in 2.4) */ }; struct in6_addr { unsigned char s6_addr[16]; /* IPv6 address */ };
#define UNIX_PATH_MAX 108 struct sockaddr_un { sa_family_t sun_family; /* AF_UNIX */ char sun_path[UNIX_PATH_MAX]; /* pathname */ };
一般服務器在啓動的時候都會綁定一個衆所周知的地址(如ip地址+端口號),用於提供服務,客戶就能夠經過它來接連服務器;而客戶端就不用指定,有系統自動分配一個端口號和自身的ip地址組合。這就是爲何一般服務器端在listen以前會調用bind(),而客戶端就不會調用,而是在connect()時由系統隨機生成一個。
網絡字節序與主機字節序
主機字節序就是咱們日常說的大端和小端模式:不一樣的CPU有不一樣的字節序類型,這些字節序是指整數在內存中保存的順序,這個叫作主機序。引用標準的Big-Endian和Little-Endian的定義以下:
a) Little-Endian就是低位字節排放在內存的低地址端,高位字節排放在內存的高地址端。
b) Big-Endian就是高位字節排放在內存的低地址端,低位字節排放在內存的高地址端。
網絡字節序:4個字節的32 bit值如下面的次序傳輸:首先是0~7bit,其次8~15bit,而後16~23bit,最後是24~31bit。這種傳輸次序稱做大端字節序。因爲TCP/IP首部中全部的二進制整數在網絡中傳輸時都要求以這種次序,所以它又稱做網絡字節序。字節序,顧名思義字節的順序,就是大於一個字節類型的數據在內存中的存放順序,一個字節的數據沒有順序的問題了。
因此:在將一個地址綁定到socket的時候,請先將主機字節序轉換成爲網絡字節序,而不要假定主機字節序跟網絡字節序同樣使用的是Big-Endian。因爲這個問題曾引起過血案!公司項目代碼中因爲存在這個問題,致使了不少莫名其妙的問題,因此請謹記對主機字節序不要作任何假定,務必將其轉化爲網絡字節序再賦給socket。
若是做爲一個服務器,在調用socket()、bind()以後就會調用listen()來監聽這個socket,若是客戶端這時調用connect()發出鏈接請求,服務器端就會接收到這個請求。
int listen(int sockfd, int backlog);
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
listen函數的第一個參數即爲要監聽的socket描述字,第二個參數爲相應socket能夠排隊的最大鏈接個數。socket()函數建立的socket默認是一個主動類型的,listen函數將socket變爲被動類型的,等待客戶的鏈接請求。
connect函數的第一個參數即爲客戶端的socket描述字,第二參數爲服務器的socket地址,第三個參數爲socket地址的長度。客戶端經過調用connect函數來創建與TCP服務器的鏈接。
TCP服務器端依次調用socket()、bind()、listen()以後,就會監聽指定的socket地址了。TCP客戶端依次調用socket()、connect()以後就想TCP服務器發送了一個鏈接請求。TCP服務器監聽到這個請求以後,就會調用accept()函數取接收請求,這樣鏈接就創建好了。以後就能夠開始網絡I/O操做了,即類同於普通文件的讀寫I/O操做。
int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);
accept函數的第一個參數爲服務器的socket描述字,第二個參數爲指向struct sockaddr *的指針,用於返回客戶端的協議地址,第三個參數爲協議地址的長度。若是accpet成功,那麼其返回值是由內核自動生成的一個全新的描述字,表明與返回客戶的TCP鏈接。
注意:accept的第一個參數爲服務器的socket描述字,是服務器開始調用socket()函數生成的,稱爲監聽socket描述字;而accept函數返回的是已鏈接的socket描述字。一個服務器一般一般僅僅只建立一個監聽socket描述字,它在該服務器的生命週期內一直存在。內核爲每一個由服務器進程接受的客戶鏈接建立了一個已鏈接socket描述字,當服務器完成了對某個客戶的服務,相應的已鏈接socket描述字就被關閉。
萬事具有隻欠東風,至此服務器與客戶已經創建好鏈接了。能夠調用網絡I/O進行讀寫操做了,即實現了網咯中不一樣進程之間的通訊!網絡I/O操做有下面幾組:
我推薦使用recvmsg()/sendmsg()函數,這兩個函數是最通用的I/O函數,實際上能夠把上面的其它函數都替換成這兩個函數。它們的聲明以下:
#include <unistd.h> ssize_t read(int fd, void *buf, size_t count); ssize_t write(int fd, const void *buf, size_t count); #include <sys/types.h> #include <sys/socket.h> ssize_t send(int sockfd, const void *buf, size_t len, int flags); ssize_t recv(int sockfd, void *buf, size_t len, int flags); ssize_t sendto(int sockfd, const void *buf, size_t len, int flags, const struct sockaddr *dest_addr, socklen_t addrlen); ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen); ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags); ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);
read函數是負責從fd中讀取內容.當讀成功時,read返回實際所讀的字節數,若是返回的值是0表示已經讀到文件的結束了,小於0表示出現了錯誤。若是錯誤爲EINTR說明讀是由中斷引發的,若是是ECONNREST表示網絡鏈接出了問題。
write函數將buf中的nbytes字節內容寫入文件描述符fd.成功時返回寫的字節數。失敗時返回-1,並設置errno變量。 在網絡程序中,當咱們向套接字文件描述符寫時有倆種可能。1)write的返回值大於0,表示寫了部分或者是所有的數據。2)返回的值小於0,此時出現了錯誤。咱們要根據錯誤類型來處理。若是錯誤爲EINTR表示在寫的時候出現了中斷錯誤。若是爲EPIPE表示網絡鏈接出現了問題(對方已經關閉了鏈接)。
其它的我就不一一介紹這幾對I/O函數了,具體參見man文檔或者baidu、Google,下面的例子中將使用到send/recv。
在服務器與客戶端創建鏈接以後,會進行一些讀寫操做,完成了讀寫操做就要關閉相應的socket描述字,比如操做完打開的文件要調用fclose關閉打開的文件。
#include <unistd.h>
int close(int fd);
close一個TCP socket的缺省行爲時把該socket標記爲以關閉,而後當即返回到調用進程。該描述字不能再由調用進程使用,也就是說不能再做爲read或write的第一個參數。
注意:close操做只是使相應socket描述字的引用計數-1,只有當引用計數爲0的時候,纔會觸發TCP客戶端向服務器發送終止鏈接請求。