併發編程之多進程模塊、進程間通信 -3

多進程模塊 multiprocessing

進程的調用

1html

from multiprocessing import Process
import time
def f(name):
    time.sleep(1)
    print('hello', name,time.ctime())

if __name__ == '__main__':
    p_list=[]
    for i in range(3):
        p = Process(target=f, args=('tom',))
        p_list.append(p)
        p.start()
    for i in p_list:
        p.join()
    print('end')
View Code

2app

from multiprocessing import Process
import time

class MyProcess(Process):
    def __init__(self):
        super(MyProcess, self).__init__()
        #self.name = name

    def run(self):
        time.sleep(1)
        print ('hello', self.name,time.ctime())


if __name__ == '__main__':
    p_list=[]
    for i in range(3):
        p = MyProcess()
        p.start()
        p_list.append(p)

    for p in p_list:
        p.join()

    print('end')
View Code
from multiprocessing import Process
import os
import time
def info(title):
  
    print("title:",title)
    print('parent process:', os.getppid())
    print('process id:', os.getpid())

def f(name):
    info('function f')
    print('hello', name)

if __name__ == '__main__':
    info('main process line')
    time.sleep(1)
    print("------------------")
    p = Process(target=info, args=('jerry',))
    p.start()
    p.join()
View Code

Process類

構造方法:async

Process([group [, target [, name [, args [, kwargs]]]]])ide

  group: 線程組,目前尚未實現,庫引用中提示必須是None; 
  target: 要執行的方法; 
  name: 進程名; 
  args/kwargs: 要傳入方法的參數。ui

實例方法:spa

  is_alive():返回進程是否在運行。線程

  join([timeout]):阻塞當前上下文環境的進程程,直到調用此方法的進程終止或到達指定的timeout(可選參數)。3d

  start():進程準備就緒,等待CPU調度code

  run():strat()調用run方法,若是實例進程時未制定傳入target,這star執行t默認run()方法。htm

  terminate():無論任務是否完成,當即中止工做進程

屬性:

  daemon:和線程的setDeamon功能同樣

  name:進程名字。

  pid:進程號。

import time
from  multiprocessing import Process

def foo(i):
    time.sleep(1)
    print (p.is_alive(),i,p.pid)
    time.sleep(1)

if __name__ == '__main__':
    p_list=[]
    for i in range(10):
        p = Process(target=foo, args=(i,))
        #p.daemon=True
        p_list.append(p)

    for p in p_list:
        p.start()
    # for p in p_list:
    #     p.join()

    print('main process end')
View Code

進程間通信

進程對列Queue

from multiprocessing import Process, Queue
import queue

def f(q,n):
    #q.put([123, 456, 'hello'])
    q.put(n*n+1)
    print("son process",id(q))

if __name__ == '__main__':
    q = Queue()  #try: q=queue.Queue()
    print("main process",id(q))

    for i in range(3):
        p = Process(target=f, args=(q,i))
        p.start()

    print(q.get())
    print(q.get())
    print(q.get())
View Code

管道

from multiprocessing import Process, Pipe

def f(conn):
    conn.send([12, {"name":"jerry"}, 'hello'])
    response=conn.recv()
    print("response",response)
    conn.close()
    print("q_ID2:",id(child_conn))

if __name__ == '__main__':

    parent_conn, child_conn = Pipe()
    print("q_ID1:",id(child_conn))
    p = Process(target=f, args=(child_conn,))
    p.start()
    print(parent_conn.recv())   # prints "[42, None, 'hello']"
    parent_conn.send("hello!")
    p.join()
View Code

Managers

Queue和pipe只是實現了數據交互,並沒實現數據共享,即一個進程去更改另外一個進程的數據。

from multiprocessing import Process, Manager

def f(d, l,n):
    d[n] = '1'
    d['2'] = 2
    d[0.25] = None
    l.append(n)
    #print(l)

    print("son process:",id(d),id(l))

if __name__ == '__main__':

    with Manager() as manager:

        d = manager.dict()

        l = manager.list(range(5))

        print("main process:",id(d),id(l))

        p_list = []

        for i in range(10):
            p = Process(target=f, args=(d,l,i))
            p.start()
            p_list.append(p)

        for res in p_list:
            res.join()

        print(d)
        print(l)
View Code

進程同步

from multiprocessing import Process, Lock

def f(l, i):
  
    with l.acquire():
        print('hello world %s'%i)

if __name__ == '__main__':
    lock = Lock()

    for num in range(10):
        Process(target=f, args=(lock, num)).start()

進程池

進程池內部維護一個進程序列,當使用時,則去進程池中獲取一個進程,若是進程池序列中沒有可供使用的進進程,那麼程序就會等待,直到進程池中有可用進程爲止。

進程池中有兩個方法:

  • apply
  • apply_async
from  multiprocessing import Process,Pool
import time,os

def Foo(i):
    time.sleep(1)
    print(i)
    return i+100

def Bar(arg):

    print(os.getpid())
    print(os.getppid())
    print('logger:',arg)

pool = Pool(5)

Bar(1)
print("----------------")

for i in range(10):
    #pool.apply(func=Foo, args=(i,))
    #pool.apply_async(func=Foo, args=(i,))
    pool.apply_async(func=Foo, args=(i,),callback=Bar)

pool.close()
pool.join()
print('end')
View Code

 

參考:http://www.cnblogs.com/yuanchenqi/articles/6248025.html

相關文章
相關標籤/搜索