以前實習筆試的時候刷題一直用的java,也參考某篇文章寫過java版的二叉樹常見算法,由於立刻要轉正面試了,這幾天都在準備面試,就把以前的翻出來用javascript從新寫了一遍,二叉樹基本都是遞歸處理的,也比較簡單,就當作熱身。後面也寫了幾種常見的排序算法,並用快排求第K大值,另外若是以前java版的做者看到的話能夠留言,我會標明文章引用。javascript
function Node(key) { this.key = key; this.left = null; this.right = null; } function binaryTree() { this.root = null; }
binaryTree.prototype.insert = function(root, key) { var node = new Node(key); if (root === null) { //樹根節點爲空則將此節點做爲根節點 this.root = node; } else if (node.key < root.key) { //小於左孩子節點則要麼做爲左子節點要麼遞歸插入左部門 if (root.left === null) { root.left = node; } else { this.insert(root.left, key); } } else { //大於右孩子節點則要麼做爲右子節點要麼遞歸插入到右部分 if (root.right === null) { root.right = node; } else { this.insert(root.right, key); } } }
//先序遍歷遞歸方法 binaryTree.prototype.preOrder = function(node) { if (node !== null) { console.log(node.key); //先打印當前結點 this.inOrder(node.left); //打印左結點 this.inOrder(node.right); //打印右結點 } } //先序遍歷非遞歸方法 //首先將根節點入棧,若是棧不爲空,取出節點打印key值,而後依次取右節點和左節點入棧,依次重複 binaryTree.prototype.preOrder2 = function(node) { let stack = []; stack.push(node); while (stack.length > 0) { let n = stack.pop(); console.log(n.key); if (n.right != null) { stack.push(n.right); } if (n.left != null) { stack.push(n.left); } } }
//中序遍歷遞歸方法 binaryTree.prototype.inOrder = function(node) { if (node !== null) { this.inOrder(node.left); console.log(node.key); this.inOrder(node.right); } } //中序遍歷非遞歸方法 //依次取左節點入棧直到左下角節點入棧完畢,彈出節點打印key,若是該節點有右子節點,將其入棧 binaryTree.prototype.inOrder2 = function(node) { let stack = []; while (node != null || stack.length) { if (node != null) { stack.push(node); node = node.left; } else { let n = stack.pop(); console.log(n.key); node = n.right; } } }
binaryTree.prototype.postOrder = function(node) { if (node !== null) { this.inOrder(node.left); this.inOrder(node.right); console.log(node.key); } }
binaryTree.prototype.treeDepth = function(node) { if (node === null) { return 0; } let left = this.treeDepth(node.left); let right = this.treeDepth(node.right); return (left > right) ? (left + 1) : (right + 1); }
binaryTree.prototype.structCmp = function(root1, root2) { if (root1 == null && root2 == null) { //根節點都爲空返回true return true; } if (root1 == null || root2 == null) { //根節點一個爲空一個不爲空返回false return false; } let a = this.structCmp(root1.left, root2.left); //都有孩子節點則遞歸判斷左邊是否是相同而且右邊也相同 let b = this.structCmp(root1.right, root2.right); return a && b; //左子樹相同而且右子樹相同 }
binaryTree.prototype.getLevelNum = function(root, k) { if (root == null || k < 1) { return 0; } if (k == 1) { return 1; } return this.getLevelNum(root.left, k - 1) + this.getLevelNum(root.right, k - 1); //從左子樹角度看,根節點第k層就是相對於左子樹k-1層,把左子樹右子樹k-1層相加便可 }
binaryTree.prototype.mirror = function(node) { if (node == null) return; [node.left, node.right] = [node.right, node.left]; //交換左右子樹並依次遞歸 this.mirror(node.left); this.mirror(node.right); }
binaryTree.prototype.findLCA = function(node, target1, target2) { if (node == null) { return null; } if (node.key == target1 || node.key == target2) { //若是當前結點和其中一個節點相等則當前結點爲公共祖先 return node; } let left = this.findLCA(node.left, target1, target2); let right = this.findLCA(node.right, target1, target2); if (left != null && right != null) { //若是左右子樹都沒找到則目標節點分別在左右子樹,根節點爲其祖先 return node; } return (left != null) ? left : right; // 找到的話返回 }
var tree = new binaryTree();
let arr = [45, 5, 13, 3, 23, 7, 111];
arr.forEach((node) => {java
tree.insert(tree.root, node);
});node
var tree2 = new binaryTree();
let arr2 = [46, 6, 14, 4, 24, 8, 112];
arr2.forEach((node) => {面試
tree2.insert(tree2.root, node);
});算法
tree.preOrder(tree.root);
tree.preOrder2(tree.root);
tree2.inOrder(tree2.root);
tree.inOrder2(tree.root);
let depth = tree.treeDepth(tree.root);
console.log(depth);
let isstructCmp = tree2.structCmp(tree.root, tree2.root);
console.log(isstructCmp);
let num = tree.getLevelNum(tree.root, 4);
console.log(num);
tree.mirror(tree.root);
tree.inOrder(tree.root);
let n = tree.findLCA(tree.root, 111, 3);
console.log(n);數組
function quickSort(array) { if(array.length <= 1){ return array; } let middle = Math.floor(array.length / 2) let pivot = array.splice(middle, 1); let left =[], right = []; for(let i = 0; i < array.length; i++) { if(array[i] < pivot) { left.push(array[i]); } else { right.push(array[i]); } } return quickSort(left).concat(pivot, quickSort(right)); }
思想是經過快排把數組切割成左中右三部分,將K與右邊數組(固然選左邊數組也能夠)長度做比較,若是右邊數組長度爲K-1,則中間元素即爲第K大值,若是右邊數組長度大於等於K,則第K大元素確定在右邊,則只須要對右邊數組遞歸求K大值,若是右邊數組長度小於K-1,則第K大值在左邊,在左數組求第k-1-right.length大值便可函數
function getK(array, k) { if(array.length <= 1){ return array; } let middle = Math.floor(array.length / 2) let pivot = array.splice(middle, 1); let left =[], right = []; for(let i = 0; i < array.length; i++) { if(array[i] < pivot) { left.push(array[i]); } else { right.push(array[i]); } } if(right.length == k - 1){ return pivot; } else if (right.length >= k) { return getK(right, k); } else { return getK(left, k-right.length-1); } }
另外此方法也不是最佳解法,還有一種比較好的解法是利用創建K個元素的最小堆,新元素替換堆頂元素並調整堆,最後獲得的K個元素即爲最大的K個元素,時間複雜度NlogKpost