主要分析了block在持有__block、__weak、__strong修飾的對象時,block結構發生的變化。c++
以及block對持有變量的引用計數形成的具體影響。objective-c
@implementation TestCode
- (void)testFunc {
@weakify(self)
self.block111 = ^{
@strongify(self);
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
if (self) {
printf("\n\nstrongPerson1 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
}else{
printf("self Retain Count = 0 \n");
}
});
};
}
- (void)dealloc {
printf("\n");
printf("✅ 【dealloc】 Retain Count = 0");
}
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
TestCode *t = [[TestCode alloc]init];
[t testFunc];
if (t.block111) {
t.block111();
}
}
@end
複製代碼
注意: 如下block111是self所持有的blockmacos
若是在block111
中對 NSMutableArray *arrayM
進行增刪元素, arrayM
是否須要用__block
修飾?bash
在block111
中對weakSelf
進行 __strong typeof(weakSelf) strongSelf = weakSelf
修飾app
block
一直不調用,那麼self
是否能夠正常銷燬?__strong typeof(weakSelf) strongSelf = weakSelf
的下一行時,self
引用計數最少
是多少?Block 是帶有自動變量(局部變量)的匿名函數, 是 C
語言的擴充功能,其本質是一個OC
對象。svn
做爲屬性函數
@property (nonatomic,copy) void(^block)(void);
post
做爲參數測試
- (void) getDataWithBlock:(id(^)(id parameter))block;
ui
做爲返回值(masonry)
- (MASConstraint * (^)(id))equalTo
- (void)testFunc {
self.block111 = ^{
printf("block測試代碼");
};
self.block111();
}
複製代碼
把OC
代碼轉成c++
代碼
clang -x objective-c -rewrite-objc -isysroot /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk -fobjc-arc -fobjc-runtime=macosx-10.13 xxxxxx.m
static void _I_TestCode_testFunc(TestCode * self, SEL _cmd) {
/// self.block = &__TestCode__testFunc_block_impl_0(A,B)
((void (*)(id, SEL, void (^ _Nonnull)()))(void *)objc_msgSend)
((id)self, sel_registerName("setBlock111:"),
(
(void (*)())&__TestCode__testFunc_block_impl_0
(
(void *)__TestCode__testFunc_block_func_0,// 參數1
&__TestCode__testFunc_block_desc_0_DATA// 參數2__TestCode__testFunc_block_desc_0,
)
)
);
((void (*(*)(id, SEL))())(void *)objc_msgSend)((id)self, sel_registerName("block111"))();
}
複製代碼
上段代碼的基本意思是
self.block = &__TestCode__testFunc_block_impl_0(A,B)
__TestCode__testFunc_block_func_0
__TestCode__testFunc_block_desc_0_DATA
struct __TestCode__testFunc_block_impl_0 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_0* Desc;
__TestCode__testFunc_block_impl_0(void *fp, struct __TestCode__testFunc_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
複製代碼
命名規律:__類名__方法名_block_impl_層級
上述代碼中能夠看出block
被編譯成了__TestCode__testFunc_block_impl_0
結構體
__TestCode__testFunc_block_impl_0
__block_impl impl
__TestCode__testFunc_block_desc_0* Desc
struct __block_impl {
void *isa;// 指向了&_NSConcreteStackBlock
int Flags;
int Reserved;
void *FuncPtr; // 用於方法的儲存本質是一個 __TestCode__testFunc_block_func_0 c函數
};
複製代碼
能夠發現__block_impl結構體內部就有一個isa指針。所以能夠證實block本質上就是一個oc對象。
__block_impl結構體中isa指針存儲着&_NSConcreteStackBlock地址,能夠暫時理解爲其類對象地址,block就是_NSConcreteStackBlock類型的。
- 看到isa就會聯想到以前在objc_class結構體,所以咱們的block本質上也是一個對象【並且是個類對象】 咱們知道實例對象->類對象->元類構成了isa鏈中的一條,而這個__block_impl結構體佔據的是中間類對象的位置
- 這裏的isa指針會指向元類,這裏的元類主要是爲了說明這個塊的存儲區域
__TestCode__testFunc_block_func_0
static void __TestCode__testFunc_block_func_0(struct __TestCode__testFunc_block_impl_0 *__cself) {
printf("block測試代碼");
}
複製代碼
__TestCode__testFunc_block_func_0
中存放的是block中的代碼
static struct __TestCode__testFunc_block_desc_0 {
size_t reserved;
size_t Block_size;
} __TestCode__testFunc_block_desc_0_DATA = { 0, sizeof(struct __TestCode__testFunc_block_impl_0)};
複製代碼
主要是存儲了block
的大小
__TestCode__testFunc_block_impl_0(void *fp, struct __TestCode__testFunc_block_desc_0 *desc, int flags=0)
__TestCode__testFunc_block_impl_0
(void *fp, struct __TestCode__testFunc_block_desc_0 *desc, int flags=0)
{
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
複製代碼
同名函數主要對兩個屬性進行了賦值
void *fp
就是 (void *)__TestCode__testFunc_block_func_0__
__ struct __TestCode__testFunc_block_desc_0 *desc
就是 &__TestCode__testFunc_block_desc_0_DATA
以上分析的是 block
不持有任何外部變量,可是當block
持有外部變量的時候,就會額外生成一些東西。
持有的基本數據類型分爲是否用__block
修飾,以下,a
用__block
修飾,b
沒有。
- (void)testFunc {
__block NSInteger a = 0;
NSInteger b = 0;
self.block111 = ^{
a = 12 + b;
printf("block測試代碼");
};
self.block111();
}
複製代碼
思考
a
用__block
修飾後能夠修改,必然a
從值傳遞,變成了地址傳遞。
__blok
把a
封裝成了什麼結構?a
的值到底存在哪裏?a
是怎麼管理內存的?要回答上述問題,咱們須要查看- (void)testFunc{}
編譯的源碼:
編譯後:
static void _I_TestCode_testFunc(TestCode * self, SEL _cmd) {
// 結構體 a 的生成 (__block NSInteger a = 0;)
__attribute__((__blocks__(byref))) __Block_byref_a_0 a =
{
(void*)0, // isa
(__Block_byref_a_0 *)&a,// a地址的傳遞
0,// flags
sizeof(__Block_byref_a_0),// size
0// a的值
};
NSInteger b = 0;
((void (*)(id, SEL, void (^ _Nonnull)()))(void *)objc_msgSend)
((id)self, sel_registerName("setBlock111:"),
/// 初始化__TestCode__testFunc_block_impl_0結構體
((void (*)())&__TestCode__testFunc_block_impl_0
(
(void *)__TestCode__testFunc_block_func_0,
&__TestCode__testFunc_block_desc_0_DATA,
b,//值傳遞b
(__Block_byref_a_0 *)&a,//把結構體(對象)a的地址傳了進去
570425344
))
);
((void (*(*)(id, SEL))())(void *)objc_msgSend)((id)self, sel_registerName("block111"))();
}
複製代碼
struct __Block_byref_a_0 {
void *__isa;
__Block_byref_a_0 *__forwarding;
int __flags;
int __size;
NSInteger a;
};
// 結構體 a 的生成
__attribute__((__blocks__(byref))) __Block_byref_a_0 a =
{
(void*)0, // isa
(__Block_byref_a_0 *)&a,// a地址的傳遞
0,// flags
sizeof(__Block_byref_a_0),// size
0// a的值
};
複製代碼
__block
修飾的a
,生成了一個用__attribute__ 修飾的 __Block_byref_a_0
類型的結構體。isa
指針,說明__Block_byref_a_0
其本質也是一個OC
對象struct __TestCode__testFunc_block_impl_0 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_0* Desc;
NSInteger b;
__Block_byref_a_0 *a; // by ref
// 同名的構造函數
__TestCode__testFunc_block_impl_0
(
void *fp,
struct __TestCode__testFunc_block_desc_0 *desc,
NSInteger _b,
__Block_byref_a_0 *_a,
int flags=0
) : b(_b), a(_a->__forwarding) { ... }
};
複製代碼
生成了新的屬性:
NSInteger b
_b
就是棧區的b
b
值傳遞__Block_byref_a_0 *a
因爲賦值到__TestCode__testFunc_block_impl_0
時,傳遞的是 棧區的__Block_byref_a_0 a
的地址,因此 _a
== &a
。
由於_a->__forwarding
就是&_a
所以__TestCode__testFunc_block_impl_0
結構體中的a
指向的就是棧中的a
小結論:
block
中的b
和外部的b
,只是值傳遞,所以即使外部修改了b
的值,也不會對block
的b
產生影響。__block a;
把a
包裝成了一個結構體,而block
內部屬性__Block_byref_a_0 *a
就是棧區結構體a
的地址block
沒有copy
操做,因此block
存在棧區,結構體a
也存在棧區static struct __TestCode__testFunc_block_desc_0 {
size_t reserved;
size_t Block_size;
//copy 函數
void (*copy)(
struct __TestCode__testFunc_block_impl_0*,
struct __TestCode__testFunc_block_impl_0*
);
// dispose 函數
void (*dispose)(struct __TestCode__testFunc_block_impl_0*);
} __TestCode__testFunc_block_desc_0_DATA =
{ 0,// reserved
sizeof(struct __TestCode__testFunc_block_impl_0), //size
__TestCode__testFunc_block_copy_0,//copy
__TestCode__testFunc_block_dispose_0//dispose
};
複製代碼
生成了 copy
dispose
函數
block
被拷貝到堆區的時候調用
實現函數是 _Block_object_assign
,它根據對象的 flags
來判斷是否須要拷貝,或者只是賦值。
// copy
static void __TestCode__testFunc_block_copy_0(struct __TestCode__testFunc_block_impl_0*dst, struct __TestCode__testFunc_block_impl_0*src){
_Block_object_assign(
(void*)&dst->a,
(void*)src->a,
8/*BLOCK_FIELD_IS_BYREF*/
);
}
複製代碼
/** _Block_object_assign參數flag相關 // 是一個對象 BLOCK_FIELD_IS_OBJECT = 3, // 是一個block BLOCK_FIELD_IS_BLOCK = 7, // 被__block修飾的變量 BLOCK_FIELD_IS_BYREF = 8, // 被__weak修飾的變量,只能被輔助copy函數使用 BLOCK_FIELD_IS_WEAK = 16, // block輔助函數調用(告訴內部實現不要進行retain或者copy) BLOCK_BYREF_CALLER = 128 **/
void _Block_object_assign(void *destAddr, const void *object, const int flags) {
// BLOCK_BYREF_CALLER block輔助函數調用(告訴內部實現不要進行retain或者copy)
if ((flags & BLOCK_BYREF_CALLER) == BLOCK_BYREF_CALLER) {
//BLOCK_FIELD_IS_WEAK 被__weak修飾的變量,只能被輔助copy函數使用
if ((flags & BLOCK_FIELD_IS_WEAK) == BLOCK_FIELD_IS_WEAK) {
_Block_assign_weak(object, destAddr);
}
else {
_Block_assign((void *)object, destAddr);
}
}
// 被__block修飾的變量
else if ((flags & BLOCK_FIELD_IS_BYREF) == BLOCK_FIELD_IS_BYREF) {
///最終走到這邊
_Block_byref_assign_copy(destAddr, object, flags);
}
// 是一個block
else if ((flags & BLOCK_FIELD_IS_BLOCK) == BLOCK_FIELD_IS_BLOCK) {
_Block_assign(_Block_copy_internal(object, flags), destAddr);
}
// 是一個對象
else if ((flags & BLOCK_FIELD_IS_OBJECT) == BLOCK_FIELD_IS_OBJECT) {
_Block_retain_object(object);
_Block_assign((void *)object, destAddr);
}
}
複製代碼
/* Block_private.h https://opensource.apple.com/source/libclosure/libclosure-73/Block_private.h */
enum {
BLOCK_DEALLOCATING = (0x0001), // runtime
BLOCK_REFCOUNT_MASK = (0xfffe), // runtime
BLOCK_NEEDS_FREE = (1 << 24), // runtime
BLOCK_HAS_COPY_DISPOSE = (1 << 25), // compiler
BLOCK_HAS_CTOR = (1 << 26), // compiler: helpers have C++ code
BLOCK_IS_GC = (1 << 27), // runtime
BLOCK_IS_GLOBAL = (1 << 28), // compiler
BLOCK_USE_STRET = (1 << 29), // compiler: undefined if !BLOCK_HAS_SIGNATURE
BLOCK_HAS_SIGNATURE = (1 << 30), // compiler
BLOCK_HAS_EXTENDED_LAYOUT=(1 << 31) // compiler
};
struct Block_byref {
void *isa;
struct Block_byref *forwarding;
int flags; /* refcount; */
int size;
};
/** runtime.c http://llvm.org/svn/llvm-project/compiler-rt/trunk/lib/BlocksRuntime/runtime.c */
static void *_Block_copy_class = _NSConcreteMallocBlock;
static void *_Block_copy_finalizing_class = _NSConcreteMallocBlock;
static int _Block_copy_flag = BLOCK_NEEDS_FREE;
static int _Byref_flag_initial_value = BLOCK_NEEDS_FREE | 2;
static void _Block_byref_assign_copy(void *dest, const void *arg, const int flags) {
struct Block_byref **destp = (struct Block_byref **)dest;
struct Block_byref *src = (struct Block_byref *)arg;
//不須要作任何操做
if (src->forwarding->flags & BLOCK_IS_GC) {
}
// 須要copy到堆區 而且須要操做引用計數
else if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
// src points to stack
bool isWeak = ((flags & (BLOCK_FIELD_IS_BYREF|BLOCK_FIELD_IS_WEAK)) == (BLOCK_FIELD_IS_BYREF|BLOCK_FIELD_IS_WEAK));
// if its weak ask for an object (only matters under GC)
struct Block_byref *copy = (struct Block_byref *)_Block_allocator(src->size, false, isWeak);
copy->flags = src->flags | _Byref_flag_initial_value; // non-GC one for caller, one for stack
copy->forwarding = copy; // patch heap copy to point to itself (skip write-barrier)
src->forwarding = copy; // patch stack to point to heap copy
copy->size = src->size;
if (isWeak) {
copy->isa = &_NSConcreteWeakBlockVariable; // mark isa field so it gets weak scanning
}
if (src->flags & BLOCK_HAS_COPY_DISPOSE) {
// Trust copy helper to copy everything of interest
// If more than one field shows up in a byref block this is wrong XXX
copy->byref_keep = src->byref_keep;
copy->byref_destroy = src->byref_destroy;
(*src->byref_keep)(copy, src);
}
else {
// just bits. Blast 'em using _Block_memmove in case they're __strong
_Block_memmove(
(void *)©->byref_keep,
(void *)&src->byref_keep,
src->size - sizeof(struct Block_byref_header));
}
}
// 已經複製到堆、只操做引用計數
else if ((src->forwarding->flags & BLOCK_NEEDS_FREE) == BLOCK_NEEDS_FREE) {
latching_incr_int(&src->forwarding->flags);
}
// assign byref data block pointer into new Block
// 其實進行了 *destp = src->forwarding 操做,把棧區的a,變成了 Block_byref *copy
_Block_assign(src->forwarding, (void **)destp);
}
static void (*_Block_assign)(void *value, void **destptr) = _Block_assign_default;
static void _Block_assign_default(void *value, void **destptr) {
*destptr = value;
}
複製代碼
省略後的代碼
struct Block_byref {
void *isa;
struct Block_byref *forwarding;
int flags; /* refcount; */
int size;
};
static void _Block_byref_assign_copy(void *dest, const void *arg, const int flags) {
...
struct Block_byref *copy = (struct Block_byref *)_Block_allocator(src->size, false, isWeak);
copy->flags = src->flags | _Byref_flag_initial_value; // non-GC one for caller, one for stack
// 堆中拷貝的forwarding指向它本身
copy->forwarding = copy; // patch heap copy to point to itself (skip write-barrier)
// 棧中的forwarding指向堆中的新對象
src->forwarding = copy; // patch stack to point to heap copy
copy->size = src->size;
...
// 其實進行了 *destp = src->forwarding 操做,把棧區的a,變成了 Block_byref *copy
_Block_assign(src->forwarding, (void **)destp);
}
複製代碼
能夠看到,Block_byref
和 __Block_byref_a_0
的前4
個成員類型相同,能夠互相轉化。
// dispose
static void __TestCode__testFunc_block_dispose_0(struct __TestCode__testFunc_block_impl_0*src){
_Block_object_dispose((void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);
}
複製代碼
void _Block_object_dispose(const void *object, const int flags) {
//printf("_Block_object_dispose(%p, %x)\n", object, flags);
if (flags & BLOCK_FIELD_IS_BYREF) {
// 釋放 __block 修飾的變量
_Block_byref_release(object);
}
else if ((flags & (BLOCK_FIELD_IS_BLOCK|BLOCK_BYREF_CALLER)) == BLOCK_FIELD_IS_BLOCK) {
// 釋放block 引用的 block
_Block_destroy(object);
}
else if ((flags & (BLOCK_FIELD_IS_WEAK|BLOCK_FIELD_IS_BLOCK|BLOCK_BYREF_CALLER)) == BLOCK_FIELD_IS_OBJECT) {
// 釋放block 引用的對象
_Block_release_object(object);
}
}
複製代碼
static void _Block_byref_release(const void *arg) {
struct Block_byref *shared_struct = (struct Block_byref *)arg;
int refcount;
shared_struct = shared_struct->forwarding;
if ((shared_struct->flags & BLOCK_NEEDS_FREE) == 0) {
return; // stack or GC or global
}
refcount = shared_struct->flags & BLOCK_REFCOUNT_MASK;
if (refcount <= 0) {
printf("_Block_byref_release: Block byref data structure at %p underflowed\n", arg);
}
else if ((latching_decr_int(&shared_struct->flags) & BLOCK_REFCOUNT_MASK) == 0) {
if (shared_struct->flags & BLOCK_HAS_COPY_DISPOSE) {
(*shared_struct->byref_destroy)(shared_struct);
}
_Block_deallocator((struct Block_layout *)shared_struct);
}
}
static void (*_Block_deallocator)(const void *) = (void (*)(const void *))free;
static int latching_decr_int(int *where) {
while (1) {
int old_value = *(volatile int *)where;
if ((old_value & BLOCK_REFCOUNT_MASK) == BLOCK_REFCOUNT_MASK) {
return BLOCK_REFCOUNT_MASK;
}
if ((old_value & BLOCK_REFCOUNT_MASK) == 0) {
return 0;
}
if (OSAtomicCompareAndSwapInt(old_value, old_value-1, (volatile int *)where)) {
return old_value-1;
}
}
}
複製代碼
被__block
修飾的變量,釋放時要用 latching_decr_int
函數減引用計數,直到計數爲0
,就釋放該對象;
而普通的對象、block
,就直接釋放銷燬。
小結:
生成了copy
despose
函數。
copy
調用時機:
block
進行copy
操做的時候就會自動調用__TestCode__testFunc_block_desc_0
內部的__TestCode__testFunc_block_copy_0
函數,__TestCode__testFunc_block_copy_0
函數內部會調用_Block_object_assign
函數。_Block_object_assign
內部是根據傳遞的flags
類型來對a
進行copy
、retain
操做despose
調用時機:
block
從堆中移除時就會自動調用__TestCode__testFunc_block_desc_0
中__TestCode__testFunc_block_dispose_0
函數,__TestCode__testFunc_block_dispose_0
函數內部會調用_Block_object_dispose
函數。_Block_object_dispose
會對 a
作釋放操做,相似於release
。__TestCode__testFunc_block_func_0
是__block_impl
結構體中存儲的block
代碼
static void __TestCode__testFunc_block_func_0(struct __TestCode__testFunc_block_impl_0 *__cself) {
__Block_byref_a_0 *a = __cself->a; // bound by ref
NSInteger b = __cself->b; // bound by copy
(a->__forwarding->a) = 12 + b;
printf("block測試代碼");
}
複製代碼
__cself
就是咱們定義的block
a->__forwarding
其實修改的就是咱們堆區的(Block_byref) copy
(注意 在ARC下咱們的block會自動copy)
下圖在TestCode.m中自定義告終構體:
struct __Block_byref_a_0 { void *__isa; struct __Block_byref_a_0 *__forwarding; int __flags; int __size; NSInteger a; }; struct __block_impl { void *isa;// 指向了&_NSConcreteStackBlock int Flags; int Reserved; void *FuncPtr; // 用於方法的儲存本質是一個 __TestCode__testFunc_block_func_0 c函數 }; struct __TestCode__testFunc_block_impl_0 { struct __block_impl impl; struct __TestCode__testFunc_block_desc_0* Desc; struct __Block_byref_a_0 *a; // by ref }; 複製代碼
![]()
__block NSInteger a = 0;
NSInteger b = 0;
self.block111 = ^{
a = 12 + b;
printf("block測試代碼");
};
複製代碼
對象類型的引用分爲三種狀況:
__block
修飾__strong
修飾(@strongify)__weak
修飾 (@weakify)⚠️注意下面的代碼產生了循環引用,隨後會作詳細的分析
- (void)testFunc {
__weak typeof(self)weakSelf = self;
__block TestCode *blockSelf = weakSelf;
self.block111 = ^{
__strong typeof(weakSelf)strongSelf = weakSelf;
void(^block222)(void) = ^{
blockSelf = strongSelf;
printf("\nblock測試代碼\n");
};
block222();
};
self.block111();
}
複製代碼
編譯上述代碼:
static void _I_TestCode_testFunc(TestCode * self, SEL _cmd) {
__attribute__((objc_ownership(weak))) typeof(self)weakSelf = self;
__attribute__((__blocks__(byref))) __Block_byref_blockSelf_0 blockSelf =
{
(void*)0,
(__Block_byref_blockSelf_0 *)&blockSelf,
33554432,
sizeof(__Block_byref_blockSelf_0),
__Block_byref_id_object_copy_131,
__Block_byref_id_object_dispose_131,
weakSelf
};
// 建立 __TestCode__testFunc_block_impl_1
((void (*)(id, SEL, void (^ _Nonnull)()))(void *)objc_msgSend)((id)self, sel_registerName("setBlock111:"), ((void (*)())&__TestCode__testFunc_block_impl_1
(//參數:
(void *)__TestCode__testFunc_block_func_1,
&__TestCode__testFunc_block_desc_1_DATA,
weakSelf,
(__Block_byref_blockSelf_0 *)&blockSelf,
570425344)
));
((void (*(*)(id, SEL))())(void *)objc_msgSend)((id)self, sel_registerName("block111"))();
}
複製代碼
struct __Block_byref_blockSelf_0 {
//【值爲:0】[8個字節]
void *__isa;
//【值爲&blockSelf】,[8個字節]
__Block_byref_blockSelf_0 *__forwarding;
int __flags;//【值爲33554432】,[4個字節]
int __size;//【值爲sizeof(__Block_byref_blockSelf_0)】,[4個字節]
//【__Block_byref_id_object_copy_131】[8個字節]
void (*__Block_byref_id_object_copy)(void*, void*);
//【__Block_byref_id_object_dispose_131】,[8個字節]
void (*__Block_byref_id_object_dispose)(void*);
TestCode *__strong blockSelf;//【weakSelf】[8個字節]
};
/// 共48個字節
複製代碼
self
使用__block
修飾後,blockPerson
被包裝成了一個與__Block_byref_a_0
類似的結構體
只是比__Block_byref_a_0
多了兩個函數:
__Block_byref_id_object_copy
值爲__Block_byref_id_object_copy_131
__Block_byref_id_object_dispose
值爲__Block_byref_id_object_dispose_131
⚠️值得注意的是blockSelf
用了__strong
修飾,所以產生了循環引用!須要改爲__block typeof(weakSelf)blockSelf = weakSelf;
下面會有詳細解釋
__Block_byref_id_object_copy_131 與 __Block_byref_id_object_dispose_131
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
_Block_object_assign((char*)dst + 40, *(void * ) ((char)src + 40), 131);
}
static void __Block_byref_id_object_dispose_131(void *src) {
_Block_object_dispose(*(void * *) ((char*)src + 40), 131);
}
複製代碼
內部調用函數爲
_Block_object_assign
dst
與src
就是blockSelf
即__Block_byref_blockSelf_0
結構體指針因
__Block_byref_blockSelf_0
共48個字節,因此(char*)dst + 40
與(char)src + 40
,找到的就是TestCode *__strong blockSelf
最後的
flags
傳遞的是131 = 3|128
即 :BLOCK_FIELD_IS_OBJECT
|BLOCK_FIELD_IS_CALLER
調用時機:block
執行copy
操做,後面會詳細分析。
struct __TestCode__testFunc_block_impl_1 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_1* Desc;
TestCode *const __weak weakSelf;
__Block_byref_blockSelf_0 *blockSelf; // by ref
__TestCode__testFunc_block_impl_1(
void *fp,
struct __TestCode__testFunc_block_desc_1 *desc,
TestCode *const __weak _weakSelf,
__Block_byref_blockSelf_0 *_blockSelf,
int flags=0
) : weakSelf(_weakSelf), blockSelf(_blockSelf->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
複製代碼
生成了兩個成員變量:Person *__weak weakPerson;
、__Block_byref_blockPerson_0 *blockPerson;
**a. __block_impl impl **
結構沒有任何變化
flags
: 570425344
表示BLOCK_HAS_COPY_DISPOSE | BLOCK_HAS_DESCRIPTOR
,即(1<<25 | 1<<29)FuncPtr
: __TestCode__testFunc_block_func_1
結構沒有任何變化
desc
:結構體__TestCode__testFunc_block_desc_1_DATA
static struct __TestCode__testFunc_block_desc_1 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __TestCode__testFunc_block_impl_1*, struct __TestCode__testFunc_block_impl_1*);
void (*dispose)(struct __TestCode__testFunc_block_impl_1*);
} __TestCode__testFunc_block_desc_1_DATA = {
0,
sizeof(struct __TestCode__testFunc_block_impl_1),
__TestCode__testFunc_block_copy_1,
__TestCode__testFunc_block_dispose_1
};
複製代碼
值得注意的是:copy、dispose的實現函數
// copy 函數
static void __TestCode__testFunc_block_copy_1(struct __TestCode__testFunc_block_impl_1*dst, struct __TestCode__testFunc_block_impl_1*src)
{
_Block_object_assign((void*)&dst->weakSelf, (void*)src->weakSelf, 3/*BLOCK_FIELD_IS_OBJECT*/);
_Block_object_assign((void*)&dst->blockSelf, (void*)src->blockSelf, 8/*BLOCK_FIELD_IS_BYREF*/);
}
// dispose 函數
static void __TestCode__testFunc_block_dispose_1(struct __TestCode__testFunc_block_impl_1*src)
{
_Block_object_dispose((void*)src->weakSelf, 3/*BLOCK_FIELD_IS_OBJECT*/);
_Block_object_dispose((void*)src->blockSelf, 8/*BLOCK_FIELD_IS_BYREF*/);
}
複製代碼
weakSelf
的 _Block_object_assign
操做void _Block_object_assign(void *destAddr, const void *object, const int flags) {
// BLOCK_BYREF_CALLER block輔助函數調用(告訴內部實現不要進行retain或者copy)
if ((flags & BLOCK_BYREF_CALLER) == BLOCK_BYREF_CALLER) { ... }
// 被__block修飾的變量
else if ((flags & BLOCK_FIELD_IS_BYREF) == BLOCK_FIELD_IS_BYREF) { ... }
// 是一個block
else if ((flags & BLOCK_FIELD_IS_BLOCK) == BLOCK_FIELD_IS_BLOCK) { ... }
// 是一個對象
else if ((flags & BLOCK_FIELD_IS_OBJECT) == BLOCK_FIELD_IS_OBJECT) {
_Block_retain_object(object);
_Block_assign((void *)object, destAddr);
}
}
複製代碼
即直接對對象進行一個_Block_retain_object
操做
可是發如今ARC下_Block_retain_object
函數並無給對象的引用計數+1。
static void (*_Block_retain_object)(const void *ptr) = _Block_retain_object_default;
static void _Block_retain_object_default(const void *ptr) {
if (!ptr) return;
}
複製代碼
blockSelf
的_Block_object_assign
操做最終會調用到_Block_byref_assign_copy
函數
static void _Block_byref_assign_copy(void *dest, const void *arg, const int flags) {
struct Block_byref **destp = (struct Block_byref **)dest;
struct Block_byref *src = (struct Block_byref *)arg;
//不須要作任何操做
if (src->forwarding->flags & BLOCK_IS_GC) {
}
// 須要copy到堆區 而且須要操做引用計數
else if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
bool isWeak = ((flags & (BLOCK_FIELD_IS_BYREF|BLOCK_FIELD_IS_WEAK)) == (BLOCK_FIELD_IS_BYREF|BLOCK_FIELD_IS_WEAK));
struct Block_byref *copy = (struct Block_byref *)_Block_allocator(src->size, false, isWeak);
copy->flags = src->flags | _Byref_flag_initial_value;
copy->forwarding = copy;
src->forwarding = copy;
copy->size = src->size;
if (isWeak) {
copy->isa = &_NSConcreteWeakBlockVariable;
}
if (src->flags & BLOCK_HAS_COPY_DISPOSE) {
/// 調用 __Block_byref_blockSelf_0 中的 __Block_byref_id_object_copy 函數
/// 執行byref的byref_keep函數(即assign函數,只是會加上BLOCK_BYREF_CALLER標誌),管理捕獲的對象內存
copy->byref_keep = src->byref_keep;
copy->byref_destroy = src->byref_destroy;
(*src->byref_keep)(copy, src);
}
else { ... }
}
// 已經複製到堆、只操做引用計數
else if ((src->forwarding->flags & BLOCK_NEEDS_FREE) == BLOCK_NEEDS_FREE) { ... }
_Block_assign(src->forwarding, (void **)destp);
}
複製代碼
值得注意的是在Block_private.h找到了這個結構:
struct Block_byref {
void *isa;
struct Block_byref *forwarding;
volatile int32_t flags; // contains ref count
uint32_t size;
};
struct Block_byref_2 {
// requires BLOCK_BYREF_HAS_COPY_DISPOSE
BlockByrefKeepFunction byref_keep;
BlockByrefDestroyFunction byref_destroy;
};
struct Block_byref_3 {
// requires BLOCK_BYREF_LAYOUT_EXTENDED
const char *layout;
};
複製代碼
其實byref_keep
就是blockSelf
中的__Block_byref_id_object_copy
也就是函數__Block_byref_id_object_copy_131
因此其調用爲
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
_Block_object_assign((char*)dst + 40, *(void * ) ((char)src + 40), 131);
}
// 譯爲
static void __Block_byref_id_object_copy_131(__Block_byref_blockSelf_0 *dst, __Block_byref_blockSelf_0 *src) {
_Block_object_assign(
dst->blockSelf,
*(void * )(src->blockSelf),
BLOCK_FIELD_IS_OBJECT|BLOCK_FIELD_IS_CALLER
);
}
複製代碼
繼續看_Block_object_assign
void _Block_object_assign(void *destAddr, const void *object, const int flags) {
// BLOCK_BYREF_CALLER block輔助函數調用(告訴內部實現不要進行retain或者copy)
if ((flags & BLOCK_BYREF_CALLER) == BLOCK_BYREF_CALLER) {
//BLOCK_FIELD_IS_WEAK 被__weak修飾的變量,只能被輔助copy函數使用
if ((flags & BLOCK_FIELD_IS_WEAK) == BLOCK_FIELD_IS_WEAK) {
_Block_assign_weak(object, destAddr);
}
else {
_Block_assign((void *)object, destAddr);
}
}
else if ((flags & BLOCK_FIELD_IS_BYREF) == BLOCK_FIELD_IS_BYREF) { ... }
else if ((flags & BLOCK_FIELD_IS_BLOCK) == BLOCK_FIELD_IS_BLOCK) { ... }
else if ((flags & BLOCK_FIELD_IS_OBJECT) == BLOCK_FIELD_IS_OBJECT) { ... }
}
static void (*_Block_assign)(void *value, void **destptr) = _Block_assign_default;
static void _Block_assign_default(void *value, void **destptr) {
*destptr = value;
}
複製代碼
運行了_Block_assign
函數,把棧區的__Block_byref_blockSelf_0 blockSelf
賦值成了Block_byref copy
weakSelf
的 dispose
操做static void __TestCode__testFunc_block_dispose_1(struct __TestCode__testFunc_block_impl_1*src)
{
_Block_object_dispose(
(void*)src->self,
3/*BLOCK_FIELD_IS_OBJECT*/
);
_Block_object_dispose(
(void*)src->blockSelf,
8/*BLOCK_FIELD_IS_BYREF*/
);
}
void _Block_object_dispose(const void *object, const int flags) {
if (flags & BLOCK_FIELD_IS_BYREF) { ... }
else if ((flags & (BLOCK_FIELD_IS_BLOCK|BLOCK_BYREF_CALLER)) == BLOCK_FIELD_IS_BLOCK) {...}
else if ((flags & (BLOCK_FIELD_IS_WEAK|BLOCK_FIELD_IS_BLOCK|BLOCK_BYREF_CALLER)) == BLOCK_FIELD_IS_OBJECT) {
// 釋放block 引用的對象
_Block_release_object(object);
}
}
static void (*_Block_release_object)(const void *ptr) = _Block_release_object_default;
static void _Block_release_object_default(const void *ptr) {
if (!ptr) return;
}
複製代碼
能夠看到:最終會調用到_Block_release_object
,內部也是沒對引用計數進行操做。
blockSelf
的 dispose
操做其最終走到了_Block_byref_release
函數:
static void _Block_byref_release(const void *arg) {
struct Block_byref *shared_struct = (struct Block_byref *)arg;
int refcount;
shared_struct = shared_struct->forwarding;
if ((shared_struct->flags & BLOCK_NEEDS_FREE) == 0) {
return;
}
refcount = shared_struct->flags & BLOCK_REFCOUNT_MASK;
if (refcount <= 0) { }
else if ((latching_decr_int(&shared_struct->flags) & BLOCK_REFCOUNT_MASK) == 0) {
/// 主要調用了
if (shared_struct->flags & BLOCK_HAS_COPY_DISPOSE) {
(*shared_struct->byref_destroy)(shared_struct);
}
_Block_deallocator((struct Block_layout *)shared_struct);
}
}
複製代碼
其中__block_release
函數內部主要是調用了(*shared_struct->byref_destroy)(shared_struct)
也就是 __Block_byref_blockSelf_0 *blockSelf
中的__Block_byref_id_object_dispose_131
函數
static void __Block_byref_id_object_dispose_131(void *src) {
_Block_object_dispose(*(void * *) ((char*)src + 40), 131);
}
///譯爲:
static void __Block_byref_id_object_dispose_131(__Block_byref_blockSelf_0 *src) {
_Block_object_dispose
(
*(void * *) (src->blockSelf),
BLOCK_FIELD_IS_OBJECT|BLOCK_FIELD_IS_CALLER
);
}
複製代碼
查看__TestCode__testFunc_block_func_1
,函數中是如何建立第二層block222
的
{
__strong typeof(weakSelf)strongSelf = weakSelf;
void(^block222)(void) = ^{
blockSelf = strongSelf;
printf("\nblock測試代碼\n");
};
block222();
}
static void __TestCode__testFunc_block_func_1(struct __TestCode__testFunc_block_impl_1 *__cself) {
__Block_byref_blockSelf_0 *blockSelf = __cself->blockSelf; // bound by ref
TestCode *const __weak weakSelf = __cself->weakSelf; // bound by copy
///__strong typeof(weakSelf)strongSelf = weakSelf;
__attribute__((objc_ownership(strong))) typeof(weakSelf)strongSelf = weakSelf;
/// 建立block222 即:__TestCode__testFunc_block_impl_0結構體
void(*block222)(void) = ((void (*)())&__TestCode__testFunc_block_impl_0((void *)__TestCode__testFunc_block_func_0,&__TestCode__testFunc_block_desc_0_DATA,strongSelf,(__Block_byref_blockSelf_0 *)blockSelf,570425344));
/// 調用: block222()
((void (*)(__block_impl *))((__block_impl *)block222)->FuncPtr)((__block_impl *)block222);
}
複製代碼
其中block222
是一個__TestCode__testFunc_block_impl_0
結構體
struct __TestCode__testFunc_block_impl_0 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_0* Desc;
TestCode *const __strong strongSelf;
__Block_byref_blockSelf_0 *blockSelf; // by ref
__TestCode__testFunc_block_impl_0(
void *fp,
struct __TestCode__testFunc_block_desc_0 *desc,
TestCode *const __strong _strongSelf,
__Block_byref_blockSelf_0 *_blockSelf,
int flags=0
) : strongSelf(_strongSelf), blockSelf(_blockSelf->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
複製代碼
其結構和__TestCode__testFunc_block_impl_1
結構類似。
只不過blockSelf
就是上層block
(即:block111
)中的 blockSelf
值得注意的是這邊有個TestCode *const __strong strongSelf;
剩下的結構與以前分析的結構大同小異:
static void __TestCode__testFunc_block_func_0(struct __TestCode__testFunc_block_impl_0 *__cself) {
__Block_byref_blockSelf_0 *blockSelf = __cself->blockSelf; // bound by ref
TestCode *const __strong strongSelf = __cself->strongSelf; // bound by copy
(blockSelf->__forwarding->blockSelf) = strongSelf;
printf("\nblock測試代碼\n");
}
static void __TestCode__testFunc_block_copy_0(struct __TestCode__testFunc_block_impl_0*dst, struct __TestCode__testFunc_block_impl_0*src) {_Block_object_assign((void*)&dst->blockSelf, (void*)src->blockSelf, 8/*BLOCK_FIELD_IS_BYREF*/);_Block_object_assign((void*)&dst->strongSelf, (void*)src->strongSelf, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static void __TestCode__testFunc_block_dispose_0(struct __TestCode__testFunc_block_impl_0*src) {_Block_object_dispose((void*)src->blockSelf, 8/*BLOCK_FIELD_IS_BYREF*/);_Block_object_dispose((void*)src->strongSelf, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static struct __TestCode__testFunc_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __TestCode__testFunc_block_impl_0*, struct __TestCode__testFunc_block_impl_0*);
void (*dispose)(struct __TestCode__testFunc_block_impl_0*);
} __TestCode__testFunc_block_desc_0_DATA = { 0, sizeof(struct __TestCode__testFunc_block_impl_0), __TestCode__testFunc_block_copy_0, __TestCode__testFunc_block_dispose_0};
複製代碼
既然在ARC
下copy
、dispose
函數都沒有對引用計數作修改,那麼何時會對引用計數進行操做?
經過對持有變量的分析、能夠總結出如下特色
- (void)testFunc {
printf("\n Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
__weak typeof (self)weakSelf1 = self;
printf("\n 【__weak typeof (self)weakSelf】 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
__weak TestCode *weakSelf2 = self;
printf("\n 【__weak TestCode *weakSelf2】 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
__strong typeof(self)strongSelf1 = self;
printf("\n 【__strong typeof(self)strongSelf1】 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
__strong TestCode *strongSelf2 = self;
printf("\n 【__strong TestCode *strongSelf2】 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
self.block111 = ^{
[weakSelf1 class];
[weakSelf2 class];
[strongSelf1 class];
[strongSelf2 class];
};
}
/** log:
Retain Count = 1
【__weak typeof (self)weakSelf】 Retain Count = 1
【__weak TestCode *weakSelf2】 Retain Count = 1
【__strong typeof(self)strongSelf1】 Retain Count = 2
【__strong TestCode *strongSelf2】 Retain Count = 3
*/
複製代碼
編譯後的代碼:
static void _I_TestCode_testFunc(TestCode * self, SEL _cmd) {
printf("...");
__attribute__((objc_ownership(weak))) typeof (self)weakSelf1 = self;
__attribute__((objc_ownership(weak))) TestCode *weakSelf2 = self;
__attribute__((objc_ownership(strong))) typeof(self)strongSelf1 = self;
__attribute__((objc_ownership(strong))) TestCode *strongSelf2 = self;
((void (*)(id, SEL, void (^ _Nonnull)()))(void *)objc_msgSend)((id)self, sel_registerName("setBlock111:"), ((void (*)())&__TestCode__testFunc_block_impl_0((void *)__TestCode__testFunc_block_func_0, &__TestCode__testFunc_block_desc_0_DATA, strongSelf1, strongSelf2, 570425344)));
}
struct __TestCode__testFunc_block_impl_0 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_0* Desc;
TestCode *const __weak weakSelf1;
TestCode *__weak weakSelf2;
__strong typeof (self) strongSelf1;
TestCode *__strong strongSelf2;
// 同名構造函數
__TestCode__testFunc_block_impl_0(...){ ... }
};
複製代碼
__weak
__weak TestCode *weakSelf1 = self
與__weak typeof(self)weakSelf2 = self
最終都調用了__attribute__((objc_ownership(weak)))
並且__TestCode__testFunc_block_impl_0
中對weakSelf1
和weakSelf2
都是弱引用
__strong
__strong typeof(self)strongSelf1 = self
與__strong TestCode *strongSelf2 = self
最終都調用了__attribute__((objc_ownership(strong)))
並且__TestCode__testFunc_block_impl_0
中對strongSelf1
和strongSelf2
都是強引用
__block
修飾的對象用__block
修飾的對象分紅兩種寫法
__block TestCode *blockSelf = weakSelf
__block typeof(weakSelf)blockSelf2 = weakSelf
- (void)testFunc {
printf("\n Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
__weak typeof(self)weakSelf = self;
__block TestCode *blockSelf1 = weakSelf;
printf("\n 【__block TestCode *blockSelf1 = weakSelf】 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
__block typeof(weakSelf)blockSelf2 = weakSelf;
printf("\n 【__block typeof(weakSelf)blockSelf2 = weakSelf】 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
self.block111 = ^{
[blockSelf1 class];
[blockSelf2 class];
};
}
/**log: Retain Count = 1 【__block TestCode *blockSelf1 = weakSelf】 Retain Count = 2 【__block typeof(weakSelf)blockSelf2 = weakSelf】 Retain Count = 2 */
複製代碼
編譯上述代碼:
struct __TestCode__testFunc_block_impl_0 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_0* Desc;
__Block_byref_blockSelf1_0 *blockSelf1; // by ref
__Block_byref_blockSelf2_1 *blockSelf2; // by ref
// 同名構造函數
__TestCode__testFunc_block_impl_0(...) { ... }
};
struct __Block_byref_blockSelf1_0 {
void *__isa;
__Block_byref_blockSelf1_0 *__forwarding;
int __flags;
int __size;
void (*__Block_byref_id_object_copy)(void*, void*);
void (*__Block_byref_id_object_dispose)(void*);
TestCode *__strong blockSelf1;
};
struct __Block_byref_blockSelf2_1 {
void *__isa;
__Block_byref_blockSelf2_1 *__forwarding;
int __flags;
int __size;
void (*__Block_byref_id_object_copy)(void*, void*);
void (*__Block_byref_id_object_dispose)(void*);
typeof (weakSelf) blockSelf2;
};
複製代碼
在__TestCode__testFunc_block_impl_0
中生成了兩個成員變量
__block TestCode *blockSelf = weakSelf
TestCode *__strong blockSelf1;
對self
進行了強引用,從而self
引用計數+1,從而產生循環引用。
__block typeof(weakSelf)blockSelf2 = weakSelf;
typeof (weakSelf) blockSelf2
對self
的引用爲弱引用,引用計數沒有+1操做。
self
的retainCount
加1,退出做用域後減一
__block typeof(self)blockSelf = self;
__block NSObject *blockSelf = self;
__strong typeof (self)strongSelf = self;
__strong NSObject *strongSelf = self;
self
的retainCount
不做操做
__weak typeof(self)weakSelf = self;
__weak NSObject *weakSelf = self;
注意 :
用這些修飾語句對對象的引用計數只在當前做用域有效。讓block
產生循環引用的關鍵在於
__TestCode__testFunc_block_impl_0
block結構體中對對象是不是強引用。
@implementation TestCode
- (void)testFunc {
@weakify(self)
self.block111 = ^{
@strongify(self);
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
if (self) {
printf("\n\nstrongPerson1 Retain Count = %ld",CFGetRetainCount((__bridge CFTypeRef)(self)));
}else{
printf("self Retain Count = 0 \n");
}
});
};
}
- (void)dealloc {
printf("\n");
printf("✅ 【dealloc】 Retain Count = 0");
}
@end
複製代碼
編譯後代碼:
/// block111結構體
struct __TestCode__testFunc_block_impl_1 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_1* Desc;
TestCode *const __weak self_weak_;// 若引用
__TestCode__testFunc_block_impl_1(void *fp, struct __TestCode__testFunc_block_desc_1 *desc, TestCode *const __weak _self_weak_, int flags=0) : self_weak_(_self_weak_) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
///block111中儲存的代碼
static void __TestCode__testFunc_block_func_1(struct __TestCode__testFunc_block_impl_1 *__cself) {
TestCode *const __weak self_weak_ = __cself->self_weak_; // bound by copy
try {} catch (...) {}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wshadow"
__attribute__((objc_ownership(strong))) __typeof__(self) self = self_weak_;
#pragma clang diagnostic pop
;
dispatch_after(dispatch_time((0ull), (int64_t)(2.0 * 1000000000ull)), dispatch_get_main_queue(), ((void (*)())&__TestCode__testFunc_block_impl_0((void *)__TestCode__testFunc_block_func_0, &__TestCode__testFunc_block_desc_0_DATA, self, 570425344)));
}
/// block222結構體
struct __TestCode__testFunc_block_impl_0 {
struct __block_impl impl;
struct __TestCode__testFunc_block_desc_0* Desc;
__strong typeof (self) self;/// 強引用
__TestCode__testFunc_block_impl_0(void *fp, struct __TestCode__testFunc_block_desc_0 *desc, __strong typeof (self) _self, int flags=0) : self(_self) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
複製代碼
**注意:**如下block111是self所持有的block
若是在block111
中對 NSMutableArray *arrayM
進行增刪元素, arrayM
是否須要用__block
修飾?
答:不須要,由於並無修改
arrayM
指針所指向的地址
在block111
中對weakSelf
進行 __strong typeof(weakSelf) strongSelf = weakSelf
修飾
若是block
一直不調用,那麼self
是否能夠正常銷燬?
答:能夠銷燬
由於
block
調用的時候,纔會建立__TestCode__testFunc_block_impl_0
使得
__TestCode__testFunc_block_impl_0
內部對self
進行了強引用從而只要
__TestCode__testFunc_block_impl_0
不銷燬,self
就沒法銷燬
當運行到__strong typeof(weakSelf) strongSelf = weakSelf
的下一行時,self
引用計數最少
是多少?
答:最少是2
可是出了
__strong typeof(weakSelf) strongSelf = weakSelf
的做用域,self
的引用計數就會自動減1
若是有不對的地方歡迎來噴~
郵箱:15076299703@163.com