玩轉pytorch中的torchvision.transforms

文章做者:Tyan
博客:noahsnail.com  |  CSDN  |  簡書
html

0. 運行環境

python 3.6.8, pytorch 1.5.0python

1. torchvision.transforms

在深度學習中,計算機視覺(CV)是其中的一大方向,而在CV任務中,圖像變換(Image Transform)一般是必不可少的一環,其能夠用來對圖像進行預處理,數據加強等。本文主要整理PyTorch中torchvision.transforms提供的一些功能(代碼加示例)。具體定義及參數可參考PyTorch文檔git

1.1 torchvision.transforms.Compose

Compose的主要做用是將多個變換組合在一塊兒,具體用法可參考2.5。下面的示例結果左邊爲原圖,右邊爲保存的結果。github

2. Transforms on PIL Image

這部分主要是對Python最經常使用的圖像處理庫Pillow中Image的處理。基本環境及圖像以下:網絡

import torchvision.transforms as transforms

from PIL import Image

img = Image.open('tina.jpg')

...

# Save image
img.save('image.jpg')

Demo

2.1 torchvision.transforms.CenterCrop(size)

CenterCrop的做用是從圖像的中心位置裁剪指定大小的圖像。例如一些神經網絡的輸入圖像大小爲224*224,而訓練圖像的大小爲256*256,此時就須要對訓練圖像進行裁剪。示例代碼及結果以下:app

size = (224, 224)
transform = transforms.CenterCrop(size)
center_crop = transform(img)
center_crop.save('center_crop.jpg')

CenterCrop

2.2 torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0)

ColorJitter的做用是隨機修改圖片的亮度、對比度和飽和度,經常使用來進行數據加強,尤爲是訓練圖像類別不均衡或圖像數量較少時。示例代碼及結果以下:dom

brightness = (1, 10)
contrast = (1, 10)
saturation = (1, 10)
hue = (0.2, 0.4)
transform = transforms.ColorJitter(brightness, contrast, saturation, hue)
color_jitter = transform(img)
color_jitter.save('color_jitter.jpg')

ColorJitter

2.3 torchvision.transforms.FiveCrop(size)

FiveCrop的做用是分別從圖像的四個角以及中心進行五次裁剪,圖像分類評估時分爲Singl Crop Evaluation/TestMulti Crop Evaluation/TestFiveCrop能夠用在Multi Crop Evaluation/Test中。示例代碼及結果以下:學習

size = (224, 224)
transform = transforms.FiveCrop(size)
five_crop = transform(img)

FiveCrop

2.4 torchvision.transforms.Grayscale(num_output_channels=1)

Grayscale的做用是將圖像轉換爲灰度圖像,默認通道數爲1,通道數爲3時,RGB三個通道的值相等。示例代碼及結果以下:ui

transform = transforms.Grayscale()
grayscale = transform(img)
grayscale.save('grayscale.jpg')

Grayscale

2.5 torchvision.transforms.Pad(padding, fill=0, padding_mode=‘constant’)

Pad的做用是對圖像進行填充,能夠設置要填充的值及填充的大小,默認是圖像四邊都填充。示例代碼及結果以下:lua

size = (224, 224)
padding = 16
fill = (0, 0, 255)
transform = transforms.Compose([
        transforms.CenterCrop(size),
        transforms.Pad(padding, fill)
])
pad = transform(img)
pad.save('pad.jpg')

Pad

2.6 torchvision.transforms.RandomAffine(degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0)

RandomAffine的做用是保持圖像中心不變的狀況下對圖像進行隨機的仿射變換。示例代碼及結果以下:

degrees = (15, 30)
translate=(0, 0.2)
scale=(0.8, 1)
fillcolor = (0, 0, 255)
transform = transforms.RandomAffine(degrees=degrees, translate=translate, scale=scale, fillcolor=fillcolor)
random_affine = transform(img)
random_affine.save('random_affine.jpg')

RandomAffine

2.7 torchvision.transforms.RandomApply(transforms, p=0.5)

RandomApply的做用是以必定的機率執行提供的transforms操做,便可能執行,也可能不執行。transforms能夠是一個,也能夠是一系列。示例代碼及結果以下:

size = (224, 224)
padding = 16
fill = (0, 0, 255)
transform = transforms.RandomApply([transforms.CenterCrop(size), transforms.Pad(padding, fill)])
for i in range(3):
    random_apply = transform(img)

RandomApply

2.8 torchvision.transforms.RandomChoice(transforms)

RandomChoice的做用是從提供的transforms操做中隨機選擇一個執行。示例代碼及結果以下:

size = (224, 224)
padding = 16
fill = (0, 0, 255)
degrees = (15, 30)
transform = transforms.RandomChoice([transforms.RandomAffine(degrees), transforms.CenterCrop(size), transforms.Pad(padding, fill)])
for i in range(3):
    random_choice = transform(img)

RandomChoice

2.9 torchvision.transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode=‘constant’)

RandomCrop的做用是在一個隨機位置上對圖像進行裁剪。示例代碼及結果以下:

size = (224, 224)
transform = transforms.RandomCrop(size)
random_crop = transform(img)

RandomCrop

2.10 torchvision.transforms.RandomGrayscale(p=0.1)

RandomGrayscale的做用是以必定的機率將圖像變爲灰度圖像。示例代碼及結果以下:

p = 0.5
transform = transforms.RandomGrayscale(p)
for i in range(3):
    random_grayscale = transform(img)

RandomGrayscale

2.11 torchvision.transforms.RandomHorizontalFlip(p=0.5)

RandomHorizontalFlip的做用是以必定的機率對圖像進行水平翻轉。示例代碼及結果以下:

p = 0.5
transform = transforms.RandomHorizontalFlip(p)
for i in range(3):
    random_horizontal_filp = transform(img)

RandomHorizontalFlip

2.12 torchvision.transforms.RandomOrder(transforms)

RandomOrder的做用是以隨機順序執行提供的transforms操做。示例代碼及結果以下:

size = (224, 224)
padding = 16
fill = (0, 0, 255)
degrees = (15, 30)
transform = transforms.RandomOrder([transforms.RandomAffine(degrees), transforms.CenterCrop(size), transforms.Pad(padding, fill)])
for i in range(3):
    random_order = transform(img)

RandomOrder

2.13 torchvision.transforms.RandomPerspective(distortion_scale=0.5, p=0.5, interpolation=3, fill=0)

RandomPerspective的做用是以必定的機率對圖像進行隨機的透視變換。示例代碼及結果以下:

distortion_scale = 0.5
p = 1
fill = (0, 0, 255)
transform = transforms.RandomPerspective(distortion_scale=distortion_scale, p=p, fill=fill)
random_perspective = transform(img)
random_perspective.save('random_perspective.jpg')

RandomPerspective

2.14 torchvision.transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=2)

RandomResizedCrop的做用是以隨機大小和隨機長寬比裁剪圖像並縮放到指定的大小。示例代碼及結果以下:

size = (256, 256)
scale=(0.8, 1.0)
ratio=(0.75, 1.0)
transform = transforms.RandomResizedCrop(size=size, scale=scale, ratio=ratio)
random_resized_crop = transform(img)
random_resized_crop.save('random_resized_crop.jpg')

RandomResizedCrop

2.15 torchvision.transforms.RandomRotation(degrees, resample=False, expand=False, center=None, fill=None)

RandomRotation的做用是對圖像進行隨機旋轉。示例代碼及結果以下:

degrees = (15, 30)
fill = (0, 0, 255)
transform = transforms.RandomRotation(degrees=degrees, fill=fill)
random_rotation = transform(img)
random_rotation.save('random_rotation.jpg')

RandomRotation

2.16 torchvision.transforms.RandomSizedCrop(*args, **kwargs)

已廢棄,參見RandomResizedCrop

2.17 torchvision.transforms.RandomVerticalFlip(p=0.5)

RandomVerticalFlip的做用是以必定的機率對圖像進行垂直翻轉。示例代碼及結果以下:

p = 1
transform = transforms.RandomVerticalFlip(p)
random_vertical_filp = transform(img)
random_vertical_filp.save('random_vertical_filp.jpg')

RandomVerticalFlip

2.18 torchvision.transforms.Resize(size, interpolation=2)

Resize的做用是對圖像進行縮放。示例代碼及結果以下:

size = (224, 224)
transform = transforms.Resize(size)
resize_img = transform(img)
resize_img.save('resize_img.jpg')

Resize

2.19 torchvision.transforms.Scale(*args, **kwargs)

已廢棄,參加Resize

2.20 torchvision.transforms.TenCrop(size, vertical_flip=False)

TenCrop與2.3相似,除了對原圖裁剪5個圖像以外,還對其翻轉圖像裁剪了5個圖像。

3. Transforms on torch.*Tensor

3.1 torchvision.transforms.LinearTransformation(transformation_matrix, mean_vector)

LinearTransformation的做用是使用變換矩陣和離線計算的均值向量對圖像張量進行變換,能夠用在白化變換中,白化變換用來去除輸入數據的冗餘信息。經常使用在數據預處理中。

3.2 torchvision.transforms.Normalize(mean, std, inplace=False)

Normalize的做用是用均值和標準差對Tensor進行歸一化處理。經常使用在對輸入圖像的預處理中,例如Imagenet競賽的許多分類網絡都對輸入圖像進行了歸一化操做。

3.3 torchvision.transforms.RandomErasing(p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False)

RandomErasing的做用是隨機選擇圖像中的一塊區域,擦除其像素,主要用來進行數據加強。示例代碼及結果以下:

p = 1.0
scale = (0.2, 0.3)
ratio = (0.5, 1.0)
value = (0, 0, 255)

transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.RandomErasing(p=p, scale=scale, ratio=ratio, value=value),
                transforms.ToPILImage()
            ])
random_erasing = transform(img)
random_erasing.save('random_erasing.jpg')

RandomErasing

4 Conversion Transforms

4.1 torchvision.transforms.ToPILImage(mode=None)

ToPILImage的做用是將pytorch的Tensornumpy.ndarray轉爲PIL的Image。示例代碼及結果以下:

img = Image.open('tina.jpg')
transform = transforms.ToTensor()
img = transform(img)
print(img.size())
img_r = img[0, :, :]
img_g = img[1, :, :]
img_b = img[2, :, :]
print(type(img_r))
print(img_r.size())
transform = transforms.ToPILImage()
img_r = transform(img_r)
img_g = transform(img_g)
img_b = transform(img_b)
print(type(img_r))
img_r.save('img_r.jpg')
img_g.save('img_g.jpg')
img_b.save('img_b.jpg')

# output
torch.Size([3, 256, 256])
<class 'torch.Tensor'>
torch.Size([256, 256])
<class 'PIL.Image.Image'>

ToPILImage

4.2 torchvision.transforms.ToTensor

ToTensor的做用是將PIL Imagenumpy.ndarray轉爲pytorch的Tensor,並會將像素值由[0, 255]變爲[0, 1]之間。一般是在神經網絡訓練中讀取輸入圖像以後使用。示例代碼以下:

img = Image.open('tina.jpg')
print(type(img))
print(img.size)
transform = transforms.ToTensor()
img = transform(img)
print(type(img))
print(img.size())

# output
<class 'PIL.JpegImagePlugin.JpegImageFile'>
(256, 256)
<class 'torch.Tensor'>
torch.Size([3, 256, 256])

5. Code

代碼參見https://github.com/SnailTyan/deep-learning-tools/blob/master/transforms.py

References

  1. https://pytorch.org/docs/stable/torchvision/transforms.html
相關文章
相關標籤/搜索