池化 和卷積

在卷積神經網絡中,我們經常會碰到池化操作,而池化層往往在卷積層後面,通過池化來降低卷積層輸出的特徵向量,同時改善結果(不易出現過擬合)。 爲什麼可以通過降低維度呢? 因爲圖像具有一種「靜態性」的屬性,這也就意味着在一個圖像區域有用的特徵極有可能在另一個區域同樣適用。因此,爲了描述大的圖像,一個很自然的想法就是對不同位置的特徵進行聚合統計,例如,人們可以計算圖像一個區域上的某個特定特徵的平均值 (或
相關文章
相關標籤/搜索