JavaShuo
欄目
標籤
Some methods of deep learning and dimensionality reduction
時間 2020-12-24
原文
原文鏈接
Deep Learning 上一篇主要是講了全連接神經網絡,這裏主要講的就是深度學習網絡的一些設計以及一些權值的設置。神經網絡可以根據模型的層數,模型的複雜度和神經元的多少大致可以分成兩類:Shallow Neural Network和Deep Neural Network。比較一下兩者: Network Name Time complexity theoretical Shallow Neura
>>阅读原文<<
相關文章
1.
Some methods of deep learning and dimensionality reduction
2.
[UFLDL] Dimensionality Reduction
3.
Paper Note --- Transfer Learning via Dimensionality Reduction
4.
Nonlinear Dimensionality Reduction by Locally Linear Embedding
5.
[Scikit-learn] 2.5 Dimensionality reduction - ICA
6.
壁虎書8 Dimensionality Reduction
7.
What are some good books/papers for learning deep learning?
8.
Dimensionality Reduction(降維)
9.
《A Review of Unsupervised Feature Learning and Deep Learning for Time-Series Modeling》筆記
10.
CS231n Lecture 15 | Efficient Methods and Hardware for Deep Learning
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
XSLT
元素
-
XSLT 教程
•
RxJava操作符(七)Conditional and Boolean
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
相關標籤/搜索
Deep Learning
methods
reduction
dimensionality
learning
deep
60.dimensionality
for...of
action.....and
between...and
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
android 以太網和wifi共存
2.
沒那麼神祕,三分鐘學會人工智能
3.
k8s 如何 Failover?- 每天5分鐘玩轉 Docker 容器技術(127)
4.
安裝mysql時一直卡在starting the server這一位置,解決方案
5.
秋招總結指南之「性能調優」:MySQL+Tomcat+JVM,還怕面試官的轟炸?
6.
布隆過濾器瞭解
7.
深入lambda表達式,從入門到放棄
8.
中間件-Nginx從入門到放棄。
9.
BAT必備500道面試題:設計模式+開源框架+併發編程+微服務等免費領取!
10.
求職面試寶典:從面試官的角度,給你分享一些面試經驗
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Some methods of deep learning and dimensionality reduction
2.
[UFLDL] Dimensionality Reduction
3.
Paper Note --- Transfer Learning via Dimensionality Reduction
4.
Nonlinear Dimensionality Reduction by Locally Linear Embedding
5.
[Scikit-learn] 2.5 Dimensionality reduction - ICA
6.
壁虎書8 Dimensionality Reduction
7.
What are some good books/papers for learning deep learning?
8.
Dimensionality Reduction(降維)
9.
《A Review of Unsupervised Feature Learning and Deep Learning for Time-Series Modeling》筆記
10.
CS231n Lecture 15 | Efficient Methods and Hardware for Deep Learning
>>更多相關文章<<