JavaShuo
欄目
標籤
Some methods of deep learning and dimensionality reduction
時間 2020-07-20
標籤
methods
deep
learning
dimensionality
reduction
简体版
原文
原文鏈接
Deep Learning 上一篇主要是講了全鏈接神經網絡,這裏主要講的就是深度學習網絡的一些設計以及一些權值的設置。神經網絡能夠根據模型的層數,模型的複雜度和神經元的多少大體能夠分紅兩類:Shallow Neural Network和Deep Neural Network。比較一下二者:git Network Name Time complexity theoretical Shallow Ne
>>阅读原文<<
相關文章
1.
Some methods of deep learning and dimensionality reduction
2.
[UFLDL] Dimensionality Reduction
3.
Paper Note --- Transfer Learning via Dimensionality Reduction
4.
Nonlinear Dimensionality Reduction by Locally Linear Embedding
5.
[Scikit-learn] 2.5 Dimensionality reduction - ICA
6.
壁虎書8 Dimensionality Reduction
7.
What are some good books/papers for learning deep learning?
8.
Dimensionality Reduction(降維)
9.
《A Review of Unsupervised Feature Learning and Deep Learning for Time-Series Modeling》筆記
10.
CS231n Lecture 15 | Efficient Methods and Hardware for Deep Learning
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
XSLT
元素
-
XSLT 教程
•
RxJava操作符(七)Conditional and Boolean
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
相關標籤/搜索
Deep Learning
methods
reduction
dimensionality
learning
deep
60.dimensionality
for...of
action.....and
between...and
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
說說Python中的垃圾回收機制?
2.
螞蟻金服面試分享,阿里的offer真的不難,3位朋友全部offer
3.
Spring Boot (三十一)——自定義歡迎頁及favicon
4.
Spring Boot核心架構
5.
IDEA創建maven web工程
6.
在IDEA中利用maven創建java項目和web項目
7.
myeclipse新導入項目基本配置
8.
zkdash的安裝和配置
9.
什麼情況下會導致Python內存溢出?要如何處理?
10.
CentoOS7下vim輸入中文
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Some methods of deep learning and dimensionality reduction
2.
[UFLDL] Dimensionality Reduction
3.
Paper Note --- Transfer Learning via Dimensionality Reduction
4.
Nonlinear Dimensionality Reduction by Locally Linear Embedding
5.
[Scikit-learn] 2.5 Dimensionality reduction - ICA
6.
壁虎書8 Dimensionality Reduction
7.
What are some good books/papers for learning deep learning?
8.
Dimensionality Reduction(降維)
9.
《A Review of Unsupervised Feature Learning and Deep Learning for Time-Series Modeling》筆記
10.
CS231n Lecture 15 | Efficient Methods and Hardware for Deep Learning
>>更多相關文章<<