給定n個字符串,詢問每一個字符串有多少子串(不包括空串)是全部n個字符串中至少k個字符串的子串?c++
第一行兩個整數n,k。數組
接下來n行每行一個字符串。ui
一行n個整數,第i個整數表示第i個字符串的答案。spa
3 1
abc
a
ab指針
6 1 3code
對於 100% 的數據,1<=n,k<=10^5,全部字符串總長不超過10^5,字符串只包含小寫字母。ip
首先發現這東西是真的很差作。。。那就找找性質字符串
先把全部子串的貢獻拆分紅每一個後綴的前綴的貢獻input
而後考慮怎麼算每一個後綴的貢獻it
又由於對於後綴i,假設前j個前綴有貢獻,那麼對於後綴i+1,它的前j-1個前綴必定是有貢獻的
是否是就想到了height數組的處理,很容易證實這個的複雜度是線性的
那麼怎麼考慮可不能夠擴展呢?
由於咱們要算這個串的出現次數
而且知道鏈接全部串的分隔符必定是不會被匹配的
因此咱們能夠直接二分出包含這個串的排名區間
那麼就能夠預處理出排名第i的字符串至少要到第j個排名的字符串才能包含k個不一樣的字符串
這個東西能夠雙指針作
必定要把預處理的指針數組初值設成INF
#include<bits/stdc++.h> using namespace std; typedef pair<int, int> pi; typedef long long ll; const int N = 2e5 + 10; const int LOG = 20; struct Suffix_Array { int s[N], n, m; int c[N], x[N], y[N]; int height[N], sa[N], rank[N]; int st[N][LOG], Log[N]; ll sum[N]; void init(int len, char *c) { n = len, m = 0; for (int i = 1; i <= len; i++) { s[i] = c[i]; m = max(m, s[i]); } } void radix_sort() { for (int i = 1; i <= m; i++) c[i] = 0; for (int i = 1; i <= n; i++) c[x[y[i]]]++; for (int i = 1; i <= m; i++) c[i] += c[i - 1]; for (int i = n; i >= 1; i--) sa[c[x[y[i]]]--] = y[i]; } void buildsa() { for (int i = 1; i <= n; i++) x[i] = s[i], y[i] = i; radix_sort(); int now; for (int k = 1; k <= n; k <<= 1) { now = 0; for (int i = n - k + 1; i <= n; i++) y[++now] = i; for (int i = 1; i <= n; i++) if (sa[i] > k) y[++now] = sa[i] - k; radix_sort(); y[sa[1]] = now = 1; for (int i = 2; i <= n; i++) y[sa[i]] = (x[sa[i]] == x[sa[i - 1]] && x[sa[i] + k] == x[sa[i - 1] + k]) ? now : ++now; swap(x, y); if (now == n) break; m = now; } } void buildrank() { for (int i = 1; i <= n; i++) rank[sa[i]] = i; } void buildsum() { for (int i = 1; i <= n; i++) sum[i] = sum[i - 1] + n - sa[i] + 1 - height[i]; } void buildheight() { for (int i = 1; i <= n; i++) if (rank[i] != 1) { int k = max(height[rank[i - 1]] - 1, 0); for (; s[i + k] == s[sa[rank[i] - 1] + k]; k++); height[rank[i]] = k; } } void buildst() { Log[1] = 0; for (int i = 2; i < N; i++) Log[i] = Log[i >> 1] + 1; for (int i = 1; i <= n; i++) st[i][0] = height[i]; for (int j = 1; j < LOG; j++) { for (int i = 1; i + (1 << (j - 1)) <= n; i++) { st[i][j] = min(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]); } } } int queryst(int l, int r) { if (l == r) return n - sa[l] + 1; if (l > r) swap(l, r); ++l; //*** int k = Log[r - l + 1]; return min(st[l][k], st[r - (1 << k) + 1][k]); } int querylcp(int la, int lb) { return queryst(rank[la], rank[lb]); } int querylcp(int la, int ra, int lb, int rb) { return min(min(ra - la + 1, rb - lb + 1), queryst(rank[la], rank[lb])); } void build(int len, char *c) { init(len, c); buildsa(); buildrank(); buildheight(); buildsum(); buildst(); } } Sa; char s[N], c[N]; int len[N], bg[N], ed[N], tot = 0; int n, k, rpos[N], num[N], bel[N]; bool check(int pos, int len) { int x = Sa.rank[pos], l, r; int l_line = x, r_line = x; l = 1, r = x - 1; while (l <= r) { int mid = (l + r) >> 1; if (Sa.queryst(x, mid) > len) l_line = mid, r = mid - 1; else l = mid + 1; } l = x + 1, r = tot; while (l <= r) { int mid = (l + r) >> 1; if (Sa.queryst(x, mid) > len) r_line = mid, l = mid + 1; else r = mid - 1; } return rpos[l_line] <= r_line; } int main() { #ifdef dream_maker freopen("input.txt", "r", stdin); #endif scanf("%d %d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%s", c + 1); len[i] = strlen(c + 1); bg[i] = tot + 1; for (int j = 1; j <= len[i]; j++) { s[++tot] = c[j]; bel[tot] = i; } ed[i] = tot; s[++tot] = '#'; } Sa.build(tot, s); memset(rpos, 0x3f, sizeof(rpos)); //***** int l = 1, r = 0, cnt = 0; for (; r <= tot; r++) { if (!bel[Sa.sa[r]]) continue; ++num[bel[Sa.sa[r]]]; if (num[bel[Sa.sa[r]]] == 1) ++cnt; if (cnt >= k) { for (; l <= r; l++) { if (!bel[Sa.sa[l]]) continue; if (cnt >= k) rpos[l] = r; else break; if (num[bel[Sa.sa[l]]] == 1) --cnt; --num[bel[Sa.sa[l]]]; } } } for (int i = 1; i <= n; i++) { ll ans = 0; int cur = 0; for (int j = bg[i]; j <= ed[i]; j++) { cur = max(cur - 1, 0); while (j + cur <= ed[i] && check(j, cur)) ++cur; ans += cur; } printf("%lld ", ans); } return 0; }