因爲spark將breeze進行了wrapper使用其提供的線性代數等功能,但爲了避免影響其程序的穩定性,以及後期對Breeze的替換。於是在MLlib外部,以及用戶本身使用時,java
不能將SDV與BDV進行互轉換(toBreeze, fromBreeze)apache
-- 封裝互轉函數以下app
import breeze.linalg._ import breeze.linalg.{DenseVector => BDV} import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.linalg.{DenseVector => SDV} import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.mllib.optimization.L1Updater object lr_testing { def SDV2BDV(vector: SDV): BDV[Double] = { new BDV(vector.values) } def BDV2SDV(vector: BDV[Double]): SDV = { new SDV(vector.data) } def main(args: Array[String]): Unit = { val sc = new SparkContext(new SparkConf().setAppName("testing").setMaster("local")) val w = new SDV(Array(1.0, 2.0, 3.0)) val g = new SDV(Array(0.0, 1.0, 1.0)) //此處將SDV轉換爲BDV能夠進行進一步計算! axpy(2.0, SDV2BDV(w), SDV2BDV(g)) println(g) } }