JavaShuo
欄目
標籤
論文分享 - An End-to-End Model for QA over KBs with Cross-Attention Combining Global Knowledge
時間 2020-12-29
原文
原文鏈接
一、概要 該文章發於ACL 2017,在Knowledge base-based question answering (KB-QA)上,作者針對於前人工作中存在沒有充分考慮候選答案的相關信息來訓練question representation的問題,提出了一個使用Cross-Attention機制的神經網絡模型來針對於候選答案的不同方面信息來訓練模型;並且訓練知識庫的全局信息學習,在一定程度
>>阅读原文<<
相關文章
1.
An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global
2.
論文解讀:Question Answering over Knowledge Base with Neural Attention Combining Global Knowledge Info...
3.
Chatbot&QA with knowledge 總結
4.
論文分享 |Jumping Knowledge Networks
5.
Learning over Knowledge-Base Embeddings for Recommendation 論文
6.
【論文筆記】Enhancing Pre-Trained Language Representations with Rich Knowledge for MRC
7.
QANet: Combining Local Convolution With Global Self-Attention For Reading Comprehension
8.
《A Joint Neural Model for Information Extraction with Global Features》論文筆記
9.
QANET: COMBINING LOCAL CONVOLUTION WITH GLOBAL SELF-ATTENTION FOR READING COMPREHENSION
10.
# Strong Baselines for Simple Question Answering over Knowledge Graphs with and without Neural Netwo
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
RxJava操作符(四)Combining
•
Git五分鐘教程
相關標籤/搜索
kbs
knowledge
combining
global
model
論文
分享
分論
分文
PHP教程
MySQL教程
Thymeleaf 教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
字節跳動21屆秋招運營兩輪面試經驗分享
2.
Java 3 年,25K 多嗎?
3.
mysql安裝部署
4.
web前端開發中父鏈和子鏈方式實現通信
5.
3.1.6 spark體系之分佈式計算-scala編程-scala中trait特性
6.
dataframe2
7.
ThinkFree在線
8.
在線畫圖
9.
devtools熱部署
10.
編譯和鏈接
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global
2.
論文解讀:Question Answering over Knowledge Base with Neural Attention Combining Global Knowledge Info...
3.
Chatbot&QA with knowledge 總結
4.
論文分享 |Jumping Knowledge Networks
5.
Learning over Knowledge-Base Embeddings for Recommendation 論文
6.
【論文筆記】Enhancing Pre-Trained Language Representations with Rich Knowledge for MRC
7.
QANet: Combining Local Convolution With Global Self-Attention For Reading Comprehension
8.
《A Joint Neural Model for Information Extraction with Global Features》論文筆記
9.
QANET: COMBINING LOCAL CONVOLUTION WITH GLOBAL SELF-ATTENTION FOR READING COMPREHENSION
10.
# Strong Baselines for Simple Question Answering over Knowledge Graphs with and without Neural Netwo
>>更多相關文章<<