JavaShuo
欄目
標籤
QANet: Combining Local Convolution With Global Self-Attention For Reading Comprehension
時間 2020-12-27
原文
原文鏈接
文章目錄 1.概述 2.模型結構 2.1.Input embedding layer 2.2 Embedding Encoder Layer 2.3.Context-Query Attention Layer 2.4.Model Encoder Layer 2.5 Output layer 3.數據增強 4.源碼及訓練 參考文獻 博主標記版paper下載地址:zsweet github 關於pap
>>阅读原文<<
相關文章
1.
QANET: COMBINING LOCAL CONVOLUTION WITH GLOBAL SELF-ATTENTION FOR READING COMPREHENSION
2.
【論文筆記】QANET:Combining Local Convolution With Global Self-attention for Reading Comprehension
3.
機器閱讀理解系列文章-QANet(Combining Local Convolution with Global Self-Attention for Reading Comprehension)
4.
Attention-over-Attention Neural Networks for Reading Comprehension 訊飛
5.
r-net:machine reading comprehension with self-matching networks
6.
Cosmos QA:Machine reading comprehension with contextual commonsense reasoning
7.
An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global
8.
【論文筆記】QANet模型
9.
QANet 論文筆記
10.
Document Modeling with Graph Attention Networks for Multi-grained Machine Reading Comprehension
更多相關文章...
•
Lua for 循環
-
Lua 教程
•
Swift for 循環
-
Swift 教程
•
RxJava操作符(四)Combining
•
Composer 安裝與使用
相關標籤/搜索
comprehension
convolution
combining
reading
local
global
unset+global
mode&global
with+this
with...connect
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab新建分支後,android studio拿不到
2.
Android Wi-Fi 連接/斷開時間
3.
今日頭條面試題+答案,花點時間看看!
4.
小程序時間組件的開發
5.
小程序學習系列一
6.
[微信小程序] 微信小程序學習(一)——起步
7.
硬件
8.
C3盒模型以及他出現的必要性和圓角邊框/前端三
9.
DELL戴爾筆記本關閉觸摸板觸控板WIN10
10.
Java的long和double類型的賦值操作爲什麼不是原子性的?
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
QANET: COMBINING LOCAL CONVOLUTION WITH GLOBAL SELF-ATTENTION FOR READING COMPREHENSION
2.
【論文筆記】QANET:Combining Local Convolution With Global Self-attention for Reading Comprehension
3.
機器閱讀理解系列文章-QANet(Combining Local Convolution with Global Self-Attention for Reading Comprehension)
4.
Attention-over-Attention Neural Networks for Reading Comprehension 訊飛
5.
r-net:machine reading comprehension with self-matching networks
6.
Cosmos QA:Machine reading comprehension with contextual commonsense reasoning
7.
An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global
8.
【論文筆記】QANet模型
9.
QANet 論文筆記
10.
Document Modeling with Graph Attention Networks for Multi-grained Machine Reading Comprehension
>>更多相關文章<<