其實這兩個都是計算交叉熵,只是輸入數據不一樣。python
#sparse 稀疏的、稀少的 word_labels = tf.constant([2,0]) predict_logits = tf.constant([[2.0,-1.0,3.0],[1.0,0.0,-0.5]]) loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels = word_labels,logits = predict_logits) with tf.Session() as sess: print(sess.run(loss)) #結果是:[0.32656264 0.4643688 ]
word_prob_distribution = tf.constant([[0.0,0.0,1.0],[1.0,0.0,0.0]]) loss = tf.nn.softmax_cross_entropy_with_logits(labels = word_prob_distribution,logits = predict_logits) with tf.Session() as sess: print(sess.run(loss)) #結果是:[0.32656264 0.4643688 ]
因爲softmax_cross_entropy_with_logits容許提供一個機率分佈,所以在使用時有更大的自由度。
舉個例子,一種叫label_smoothing的技巧將正確數據的機率設爲一個比1.0略小的值,將錯誤的該機率設置爲一個比0.0略大的值,
這樣能夠避免模型與數據過擬合,在某些時候能夠提升訓練效果
word_prob_smooth = tf.constant([[0.01, 0.01, 0.97], [0.98, 0.03, 0.01]]) loss = tf.nn.softmax_cross_entropy_with_logits(labels = word_prob_smooth,logits = predict_logits) with tf.Session() as sess: print(sess.run(loss)) #[0.37329704 0.5186562 ]