python調用statsmodels模塊實現整合移動平均自迴歸模型(ARIMA)——以預測股票收盤價爲例

[TOC]python

程序簡介

<font size=3>調用statsmodels模塊對上證指數的收盤價進行ARIMA模型動態建模,ARIMA適合短時間預測,所以輸入爲15個數據,輸出爲1個數據 程序輸入:原序列,須要日後預測的個數 程序輸出:預測序列,模型結構(白噪聲檢驗、單根檢驗、一階差分自相關圖、一階差分偏自相關圖)api

<b>差分整合移動平均自迴歸模型(ARIMA)</b>,ARIMA(p,d,q)中,AR是」自迴歸」,p爲自迴歸項數;MA爲」滑動平均」,q爲滑動平均項數,d爲使之成爲平穩序列所作的差分次數(階數)。</font>app

程序/數據集下載

<font size=3>點擊進入下載地址</font>函數

代碼分析

<font size=3>導入模塊、路徑<br></font>測試

# -*- coding: utf-8 -*-
from Module.BuildModel import ARIMA
from sklearn.metrics import mean_absolute_error
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os

#路徑目錄
baseDir = ''#當前目錄
staticDir = os.path.join(baseDir,'Static')#靜態文件目錄
resultDir = os.path.join(baseDir,'Result')#結果文件目錄

<font size=3>讀取數據、分紅訓練集和測試集,查看前5行<br></font>ui

#讀取數據
data = pd.read_csv(staticDir+'/000001.csv',encoding='gbk')
train = data['收盤價'].values[-20:-10]#訓練數據
test = data['收盤價'].values[-10:]#測試數據
data.head()

<div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }url

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

</style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>日期</th> <th>股票代碼</th> <th>名稱</th> <th>收盤價</th> <th>最高價</th> <th>最低價</th> <th>開盤價</th> <th>前收盤</th> <th>漲跌額</th> <th>漲跌幅</th> <th>成交量</th> <th>成交金額</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>2020-02-18</td> <td>'000001</td> <td>上證指數</td> <td>2984.9716</td> <td>2990.6003</td> <td>2960.7751</td> <td>2981.4097</td> <td>2983.6224</td> <td>1.3492</td> <td>0.0452</td> <td>311665913</td> <td>3.74998562648e+11</td> </tr> <tr> <th>1</th> <td>2020-02-17</td> <td>'000001</td> <td>上證指數</td> <td>2983.6224</td> <td>2983.6371</td> <td>2924.9913</td> <td>2924.9913</td> <td>2917.0077</td> <td>66.6147</td> <td>2.2837</td> <td>313198007</td> <td>3.67014340129e+11</td> </tr> <tr> <th>2</th> <td>2020-02-14</td> <td>'000001</td> <td>上證指數</td> <td>2917.0077</td> <td>2926.9427</td> <td>2899.5739</td> <td>2899.8659</td> <td>2906.0735</td> <td>10.9342</td> <td>0.3763</td> <td>250650627</td> <td>3.08080368726e+11</td> </tr> <tr> <th>3</th> <td>2020-02-13</td> <td>'000001</td> <td>上證指數</td> <td>2906.0735</td> <td>2935.4060</td> <td>2901.2425</td> <td>2927.1443</td> <td>2926.8991</td> <td>-20.8256</td> <td>-0.7115</td> <td>274804844</td> <td>3.34526327364e+11</td> </tr> <tr> <th>4</th> <td>2020-02-12</td> <td>'000001</td> <td>上證指數</td> <td>2926.8991</td> <td>2926.8991</td> <td>2892.4240</td> <td>2895.5561</td> <td>2901.6744</td> <td>25.2247</td> <td>0.8693</td> <td>248733429</td> <td>2.97534420493e+11</td> </tr> </tbody> </table> </div>spa

<font size=3>調用ARIMA函數進行動態建模,函數自動繪製一階差分自相關圖和一階差分偏自相關圖,即每次預測1個值,持續屢次,計算並打印MAE.net

其中ARIMA函數位置在Module/BuildModel.py,代碼會在下文給出 </font>code

#ARIMA動態建模
yPre = []
for i in range(test.shape[0]):
    #只預測1個數
    result = ARIMA(train,1)
    yPre.append(result['predict']['value'][0])
    #更新訓練集
    train = train.tolist()[:-1]
    train.append(test[i])
    train = np.array(train).reshape(-1)
#計算MAE
MAE = mean_absolute_error(test,yPre)
print('偏差MAE',MAE)

<font size=3>這裏給出上文用到的ARIMA函數,直接運行是直接驗證代碼有效性的另外一個簡單實驗,程序會保留白噪聲檢驗、單根檢驗、一階差分自相關圖、一階差分偏自相圖</font>

# -*- coding: utf-8 -*-
import os
import pandas as pd
import numpy as np
import statsmodels.api as sm
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa import arima_model
from statsmodels.stats.diagnostic import acorr_ljungbox
import warnings
warnings.filterwarnings("ignore")


def ARIMA(series,n):
    '''
    只討論一階差分的ARIMA模型,預測,數字索引從1開始
    series:時間序列
    n:須要日後預測的個數
    '''
    series = np.array(series)
    series = pd.Series(series.reshape(-1))
    currentDir = os.getcwd()#當前工做路徑
    #一階差分數據
    fd = series.diff(1)[1:]
    plot_acf(fd).savefig(currentDir+'/一階差分自相關圖.png')
    plot_pacf(fd).savefig(currentDir+'/一階差分偏自相關圖.png')
    #一階差分單位根檢驗
    unitP = adfuller(fd)[1]
    if unitP>0.05:
        unitAssess = '單位根檢驗中p值爲%.2f,大於0.05,該一階差分序列可能爲非平穩序列'%(unitP)
        #print('單位根檢驗中p值爲%.2f,大於0.05,認爲該一階差分序列判斷爲非平穩序列'%(unitP))
    else:
        unitAssess = '單位根檢驗中p值爲%.2f,小於0.05,認爲該一階差分序列爲平穩序列'%(unitP)
        #print('單位根檢驗中p值爲%.2f,小於0.05,認爲該一階差分序列判斷爲平穩序列'%(unitP))
    #白噪聲檢驗
    noiseP = acorr_ljungbox(fd, lags=1)[-1]
    if noiseP<=0.05:
        noiseAssess = '白噪聲檢驗中p值爲%.2f,小於0.05,認爲該一階差分序列爲非白噪聲'%noiseP
        #print('白噪聲檢驗中p值爲%.2f,小於0.05,認爲該一階差分序列爲非白噪聲'%noiseP)
    else:
        noiseAssess = '白噪聲檢驗中p值%.2f,大於0.05,該一階差分序列可能爲白噪聲'%noiseP
        #print('白噪聲檢驗中%.2f,大於0.05,認爲該一階差分序列爲白噪聲'%noiseP)
    #BIC準則肯定p、q值
    pMax = int(series.shape[0]/10)# 通常階數不超過length/10
    qMax = pMax# 通常階數不超過length/10
    bics = list()
    for p in range(pMax + 1):
        tmp = list()
        for q in range(qMax + 1):
            try:
                tmp.append(arima_model.ARIMA(series, (p, 1, q)).fit().bic)
            except Exception as e:
                #print(str(e))
                tmp.append(1e+10)#加入一個很大的數
        bics.append(tmp)
    bics = pd.DataFrame(bics)
    p, q = bics.stack().idxmin()
    #print('BIC準則下肯定p,q爲%s,%s'%(p,q))
    #建模
    model = arima_model.ARIMA(series,order=(p, 1, q)).fit()
    predict = model.forecast(n)[0]
    return {
            'model':{'value':model,'desc':'模型'},
            'unitP':{'value':unitP,'desc':unitAssess},
            'noiseP':{'value':noiseP[0],'desc':noiseAssess},
            'p':{'value':p,'desc':'AR模型階數'},
            'q':{'value':q,'desc':'MA模型階數'},
            'params':{'value':model.params,'desc':'模型係數'},
            'predict':{'value':predict,'desc':'日後預測%d個的序列'%(n)}
            }
    
if __name__ == "__main__":
    data = data = np.array([1.2,2.2,3.1,4.5,5.6,6.7,7.1,8.2,9.6,10.6,11,12.4,13.5,14.7,15.2])
    x = data[0:10]#輸入數據
    y = data[10:]#須要預測的數據
    result = ARIMA(x,len(y))#預測結果,一階差分偏自相關圖,一階差分自相關圖
    predict = result['predict']['value']
    predict = np.round(predict,1)
    print('真實值:',y)
    print('預測值:',predict)
    print(result)

<font size=3>打印創建的股票模型假設檢驗結論,能夠看到序列可能爲白噪聲,可是仍然能夠強行建模</font>

#打印模型結構
print(result['noiseP']['desc'])
print(result['unitP']['desc'])
白噪聲檢驗中p值0.98,大於0.05,該一階差分序列可能爲白噪聲
單位根檢驗中p值爲0.99,大於0.05,該一階差分序列可能爲非平穩序列

<font size=3>觀測值預測值對比可視化</font>

#可視化
plt.clf()#清理歷史繪圖
#用來正常顯示中文標籤
plt.rcParams['font.sans-serif']=['SimHei'] 
#用來正常顯示負號
plt.rcParams['axes.unicode_minus']=False
plt.plot(range(test.shape[0]),yPre,label="預測值")
plt.plot(range(test.shape[0]),test,label="觀測值")
plt.legend()
plt.title('ARIMA預測效果,MAE:%2f'%MAE)
plt.savefig(resultDir+'/ARIMA預測效果.png',dpi=100,bbox_inches='tight')

相關文章
相關標籤/搜索