FM算法能夠學習到原始特徵的embedding表示

FM算法是CTR預估中的經典算法,其優勢是能夠自動學習出交叉特徵.因爲這種特性,FM在CTR預估上的效果會遠超LR. 說明:通過FM的公式可以看出,FM自動學習交叉是通過學習到每個特徵xi的向量表示vi得到的.比如說,對於field A,其特徵有100w種取值,如果使用one-hot編碼。那麼,每個特徵需要使用100w維特徵表示.使用了FM算法學習之後,比如說使用vi的特徵維度是10維.那麼,每個
相關文章
相關標籤/搜索