c#圖像處理入門html
-bitmap類和圖像像素值獲取方法算法
一.Bitmap類編程
Bitmap對象封裝了GDI+中的一個位圖,此位圖由圖形圖像及其屬性的像素數據組成.所以Bitmap是用於處理由像素數據定義的圖像的對象.該類的主要方法和屬性以下:c#
1. GetPixel方法和SetPixel方法:獲取和設置一個圖像的指定像素的顏色.windows
2. PixelFormat屬性:返回圖像的像素格式.數組
3. Palette屬性:獲取和設置圖像所使用的顏色調色板.安全
4. Height Width屬性:返回圖像的高度和寬度.數據結構
5. LockBits方法和UnlockBits方法:分別鎖定和解鎖系統內存中的位圖像素.在基於像素點的圖像處理方法中使用LockBits和UnlockBits是一個很好的方式,這兩種方法可使咱們指定像素的範圍來控制位圖的任意一部分,從而消除了經過循環對位圖的像素逐個進行處理,每調用LockBits以後都應該調用一次UnlockBits.ide
二.BitmapData類函數
BitmapData對象指定了位圖的屬性
1. Height屬性:被鎖定位圖的高度.
2. Width屬性:被鎖定位圖的高度.
3. PixelFormat屬性:數據的實際像素格式.
4. Scan0屬性:被鎖定數組的首字節地址,若是整個圖像被鎖定,則是圖像的第一個字節地址.
5. Stride屬性:步幅,也稱爲掃描寬度.
如上圖所示,數組的長度並不必定等於圖像像素數組的長度,還有一部分未用區域,這涉及到位圖的數據結構,系統要保證每行的字節數必須爲4的倍數.
三.Graphics類
Graphics對象是GDI+的關鍵所在,許多對象都是由Graphics類表示的,該類定義了繪製和填充圖形對象的方法和屬性,一個應用程序只要須要進行繪製或着色,它就必須使用Graphics對象.
四.Image類
這個類提供了位圖和元文件操做的函數.Image類被聲明爲abstract,也就是說Image類不能實例化對象,而只能作爲一個基類
1.FromFile方法:它根據輸入的文件名產生一個Image對象,它有兩種函數形式:
public static Image FromFile(string filename);
public static Image FromFile(string filename, bool useEmbeddedColorManagement);
2.FromHBitmap方法:它從一個windows句柄處建立一個bitmap對象,它也包括兩種函數形式:
public static bitmap fromhbitmap(intptr hbitmap);
public static bitmap fromhbitmap(intptr hbitmap, intptr hpalette);
3. FromStream方法:從一個數據流中建立一個image對象,它包含三種函數形式:
public static image fromstream(stream stream);
public static image fromstream(stream stream, bool useembeddedcolormanagement);
fromstream(stream stream, bool useembeddedcolormanagement, bool validateimagedata);
有了上面的瞭解,咱們即可以開始利用C#作圖像處理,下面介紹幾種方法:
一. 打開、保存、顯示圖像
privateBitmap srcBitmap = null;
privateBitmap showBitmap = null;
//打開文件
privatevoid menuFileOpen_Click(object sender, EventArgs e)
{
OpenFileDialog openFileDialog = newOpenFileDialog();
openFileDialog.Filter = @"Bitmap文件(*.bmp)|*.bmp|Jpeg文件(*.jpg)|*.jpg|全部合適文件(*.bmp,*.jpg)|*.bmp;*.jpg";
openFileDialog.FilterIndex = 3;
openFileDialog.RestoreDirectory = true;
if (DialogResult.OK == openFileDialog.ShowDialog())
{
srcBitmap = (Bitmap)Bitmap.FromFile(openFileDialog.FileName, false);
showBitmap = srcBitmap;
this.AutoScroll = true;
this.AutoScrollMinSize =
newSize((int)(showBitmap.Width), (int)(showBitmap.Height));
this.Invalidate();
}
}
//保存圖像文件
privatevoid menuFileSave_Click(object sender, EventArgs e)
{
if (showBitmap != null)
{
SaveFileDialog saveFileDialog = newSaveFileDialog();
saveFileDialog.Filter =
@"Bitmap文件(*.bmp)|*.bmp|Jpeg文件(*.jpg)|*.jpg|全部合適文件(*.bmp,*.jpg)|*.bmp;*.jpg";
saveFileDialog.FilterIndex = 3;
saveFileDialog.RestoreDirectory = true;
if (DialogResult.OK == saveFileDialog.ShowDialog())
{
ImageFormat format = ImageFormat.Jpeg;
switch (Path.GetExtension(saveFileDialog.FileName).ToLower())
{
case".jpg":
format = ImageFormat.Jpeg;
break;
case".bmp":
format = ImageFormat.Bmp;
break;
default:
MessageBox.Show(this, "Unsupported image format was specified", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);
return;
}
try
{
showBitmap.Save(saveFileDialog.FileName,format );
}
catch (Exception)
{
MessageBox.Show(this, "Failed writing image file", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);
}
}
}
}
c#中將bitmap或者image保存爲清晰的gif
在c#中默承認以講bitmap保存爲gif等格式,可是這種保存方法保存的gif會嚴重失真,正常狀況下的代碼:
1 System.Drawing.Bitmap b = new System.Drawing.Bitmap(「c://original_image.gif「);
2 System.Drawing.Image thmbnail = b.GetThumbnailImage(100,75,null,new IntPtr());
3 thmbnail.Save(「c://thumnail.gif「, System.Drawing.Imaging.ImageFormat.Gif);
一個批量處理圖片的軟件,包括各類處理方式,處理效果,可是在保存爲gif的時候出現了問題,在網上查了好久也沒有發現一個可用的改善gif圖片質量的方法,找到了一個解決辦法,保存出來的gif容量大減,可是效果基本符合常規這中方法就是就是「Octree「 算法。
「Octree「 算法容許咱們插入本身的算法來量子化咱們的圖像。
一個好的「顏色量子化」算法應該考慮在兩個像素顆粒之間填充與這兩個像素顏色相近的過渡顏色,提供更多可視顏色空間。
Morgan Skinner提供了很好的「Octree「 算法代碼,你們能夠下載參考使用。
使用OctreeQuantizer很方便:
System.Drawing.Bitmap b = new System.Drawing.Bitmap(「c://original_image.gif「);
System.Drawing.Image thmbnail = b.GetThumbnailImage(100,75,null,new IntPtr());
OctreeQuantizer quantizer = new OctreeQuantizer ( 255 , 8 ) ;
using ( Bitmap quantized = quantizer.Quantize ( thmbnail ) )
{
quantized.Save(「c://thumnail.gif「, System.Drawing.Imaging.ImageFormat.Gif);
}
OctreeQuantizer grayquantizer = new GrayscaleQuantizer ( ) ;
using ( Bitmap quantized = grayquantizer.Quantize ( thmbnail ) )
{
quantized.Save(「c://thumnail.gif「, System.Drawing.Imaging.ImageFormat.Gif);
}
你能夠點擊這裏下載類的文件(項目文件),根據個人試用,只須要兩個類文件(OctreeQuantizer.cs,Quantizer.cs)便可運行,將這兩個類文件的namespace改爲你項目的名稱就行,還有,須要在不安全編譯的方式下編譯,右擊項目名稱,在生成選項卡里選擇"容許不安全代碼"便可
//窗口重繪,在窗體上顯示圖像,重載Paint
privatevoid frmMain_Paint(object sender, System.Windows.Forms.PaintEventArgs e)
{
if (showBitmap != null)
{
Graphics g = e.Graphics;
g.DrawImage(showBitmap, newRectangle(this.AutoScrollPosition.X, this.AutoScrollPosition.Y ,
(int)(showBitmap.Width), (int)(showBitmap.Height)));
}
}
//灰度化
privatevoid menu2Gray_Click(object sender, EventArgs e)
{
if (showBitmap == null) return;
showBitmap = RGB2Gray(showBitmap);//下面都以RGB2Gray爲例
this.Invalidate();
}
二. 提取像素法
這種方法簡單易懂,但至關耗時,徹底不可取.
publicstaticBitmap RGB2Gray(Bitmap srcBitmap)
{
Color srcColor;
int wide = srcBitmap.Width;
int height = srcBitmap.Height;
for (int y = 0; y < height; y++)
for (int x = 0; x < wide; x++)
{
//獲取像素的RGB顏色值
srcColor = srcBitmap.GetPixel(x, y);
byte temp = (byte)(srcColor.R * .299 + srcColor.G * .587 + srcColor.B * .114);
//設置像素的RGB顏色值
srcBitmap.SetPixel(x, y, Color.FromArgb(temp, temp, temp));
}
return srcBitmap ;
}
三. 內存法
這是比較經常使用的方法
publicstaticBitmap RGB2Gray(Bitmap srcBitmap)
{
int wide = srcBitmap.Width;
int height = srcBitmap.Height;
Rectangle rect = newRectangle(0, 0, wide, height);
//將Bitmap鎖定到系統內存中,得到BitmapData
BitmapData srcBmData = srcBitmap.LockBits(rect,
ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);
//建立Bitmap
Bitmap dstBitmap = CreateGrayscaleImage(wide, height);//這個函數在後面有定義
BitmapData dstBmData = dstBitmap.LockBits(rect,
ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);
//位圖中第一個像素數據的地址。它也能夠當作是位圖中的第一個掃描行
System.IntPtr srcPtr = srcBmData.Scan0;
System.IntPtr dstPtr = dstBmData.Scan0;
//將Bitmap對象的信息存放到byte數組中
int src_bytes = srcBmData.Stride * height;
byte[] srcValues = newbyte[src_bytes];
int dst_bytes = dstBmData.Stride * height;
byte[] dstValues = newbyte[dst_bytes];
//複製GRB信息到byte數組
System.Runtime.InteropServices.Marshal.Copy(srcPtr, srcValues, 0, src_bytes);
System.Runtime.InteropServices.Marshal.Copy(dstPtr, dstValues, 0, dst_bytes);
//根據Y=0.299*R+0.114*G+0.587B,Y爲亮度
for (int i = 0; i < height; i++)
for (int j = 0; j < wide; j++)
{
//只處理每行中圖像像素數據,捨棄未用空間
//注意位圖結構中RGB按BGR的順序存儲
int k = 3 * j;
byte temp = (byte)(srcValues[i * srcBmData.Stride + k + 2] * .299
+ srcValues[i * srcBmData.Stride + k + 1] * .587
+ srcValues[i * srcBmData.Stride + k] * .114);
dstValues[i * dstBmData.Stride + j] = temp;
}
System.Runtime.InteropServices.Marshal.Copy(dstValues, 0, dstPtr, dst_bytes);
//解鎖位圖
srcBitmap.UnlockBits(srcBmData);
dstBitmap.UnlockBits(dstBmData);
return dstBitmap;
}
四 指針法
C/C++的習慣,不是C#的特色
publicstaticBitmap RGB2Gray(Bitmap srcBitmap)
{
int wide = srcBitmap.Width;
int height = srcBitmap.Height ;
Rectangle rect = newRectangle(0, 0, wide, height);
BitmapData srcBmData = srcBitmap.LockBits(rect,
ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);
Bitmap dstBitmap = CreateGrayscaleImage(wide, height);
BitmapData dstBmData = dstBitmap.LockBits(rect,
ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);
System.IntPtr srcScan = srcBmData.Scan0;
System.IntPtr dstScan = dstBmData.Scan0;
Unsafe //啓動不安全代碼
{
byte* srcP = (byte*)(void*) srcScan;
byte* dstP = (byte*)(void*) dstScan;
int srcOffset = srcBmData.Stride - wide * 3;
int dstOffset = dstBmData.Stride - wide ;
byte red, green, blue;
for (int y = 0; y < height; y++)
{
for (int x = 0; x <wide ; x++, srcP += 3, dstP++)
{
blue = srcP [0];
green = srcP [1];
red = srcP [2];
* dstP = (byte)(.299 * red + .587 * green + .114 * blue);
}
srcP += srcOffset;
dstP += dstOffset;
}
}
srcBitmap.UnlockBits(srcBmData);
dstBitmap.UnlockBits(dstBmData );
return dstBitmap;
}
五. 矩陣法
並非什麼新方法,只是將圖像數據分作R,G,B三個矩陣(二維數組)存儲,相似MATLAB的習慣.
publicstaticbool GetRGB(Bitmap Source, outint[,] R, outint[,] G, outint[,] B)
{
try
{
int iWidth = Source.Width;
int iHeight = Source.Height;
Rectangle rect = newRectangle(0, 0, iWidth, iHeight);
System.Drawing.Imaging.BitmapData bmpData = Source.LockBits(rect,
System.Drawing.Imaging.ImageLockMode.ReadWrite, Source.PixelFormat);
IntPtr iPtr = bmpData.Scan0;
int iBytes = iWidth * iHeight * 3;
byte[] PixelValues = new byte[iBytes];
System.Runtime.InteropServices.Marshal.Copy(iPtr, PixelValues, 0, iBytes);
Source.UnlockBits(bmpData);
R = newint[iHeight, iWidth];
G = newint[iHeight, iWidth];
B = newint[iHeight, iWidth];
int iPoint = 0;
for (int i = 0; i < iHeight; i++)
{
for (int j = 0; j < iWidth; j++)
{
B[i, j] = Convert.ToInt32(PixelValues[iPoint++]);
G[i, j] = Convert.ToInt32(PixelValues[iPoint++]);
R[i, j] = Convert.ToInt32(PixelValues[iPoint++]);
}
}
return true;
}
catch (Exception)
{
R = null;
G = null;
B = null;
returnfalse;
}
}
publicstaticBitmap FromRGB(int[,] R, int[,] G, int[,] B)
{
int iWidth = G.GetLength(1);
int iHeight = G.GetLength(0);
Bitmap Result = newBitmap(iWidth, iHeight,
System.Drawing.Imaging.PixelFormat.Format24bppRgb);
Rectangle rect = newRectangle(0, 0, iWidth, iHeight);
System.Drawing.Imaging.BitmapData bmpData = Result.LockBits(rect,
System.Drawing.Imaging.ImageLockMode.ReadWrite, System.Drawing.Imaging.PixelFormat.Format24bppRgb);
IntPtr iPtr = bmpData.Scan0;
int iStride = bmpData.Stride;
int iBytes = iWidth * iHeight * 3;
byte[] PixelValues = newbyte[iBytes];
int iPoint = 0;
for (int i = 0; i < iHeight; i++)
for (int j = 0; j < iWidth; j++)
{
int iG = G[i, j];
int iB = B[i, j];
int iR = R[i, j];
PixelValues[iPoint] = Convert.ToByte(iB);
PixelValues[iPoint + 1] = Convert.ToByte(iG);
PixelValues[iPoint + 2] = Convert.ToByte(iR);
iPoint += 3;
}
System.Runtime.InteropServices.Marshal.Copy(PixelValues, 0, iPtr, iBytes);
Result.UnlockBits(bmpData);
return Result;
}
publicstaticbool GetGray(Bitmap srcBitmap, outbyte [,] gray)
{
Bitmap tempBitmap;
if (srcBitmap.PixelFormat != PixelFormat.Format8bppIndexed)
tempBitmap = ImageProcess.Image.Gray(srcBitmap);
else
tempBitmap = srcBitmap;
int wide = tempBitmap.Width;
int height = tempBitmap.Height;
gray = newbyte [height, wide];
BitmapData gbmData = tempBitmap.LockBits(newRectangle(0, 0, wide, height),
ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);
System.IntPtr ScanG = gbmData.Scan0;
int gOffset = gbmData.Stride - wide;
unsafe
{
byte* g = (byte*)(void*)ScanG;
for (int y = 0; y < height; y++)
{
for (int x = 0; x < wide; x++, g++)
{
gray[y ,x ] =*g;
}
g += gOffset;
}
}
tempBitmap.UnlockBits(gbmData);
returntrue ;
}
Public static Bitmap FromGray(byte [,] Gray)
{
int iWidth = Gray.GetLength(1);
int iHeight = Gray.GetLength(0);
Bitmap dstBitmap = ImageProcess.Image.CreateGrayscaleImage(iWidth, iHeight);
BitmapData gbmData = dstBitmap.LockBits(newRectangle(0, 0, iWidth, iHeight),
ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);
System.IntPtr ScanG = gbmData.Scan0;
int gOffset = gbmData.Stride - iWidth;
unsafe
{
byte* g = (byte*)(void*)ScanG;
for (int i = 0; i < iHeight; i++)
{
for (int j = 0; j < iWidth; j++)
{
*g=(byte )Gray[i, j] ;
g++;
}
g += gOffset;
}
}
dstBitmap.UnlockBits(gbmData);
return dstBitmap;
}
///<summary>
/// Create and initialize grayscale image
///</summary>
publicstaticBitmap CreateGrayscaleImage( int width, int height )
{
// create new image
Bitmap bmp = newBitmap( width, height, PixelFormat.Format8bppIndexed );
// set palette to grayscale
SetGrayscalePalette( bmp );
// return new image
return bmp;
}//#
///<summary>
/// Set pallete of the image to grayscale
///</summary>
publicstaticvoid SetGrayscalePalette( Bitmap srcImg )
{
// check pixel format
if ( srcImg.PixelFormat != PixelFormat.Format8bppIndexed )
thrownewArgumentException( );
// get palette
ColorPalette cp = srcImg.Palette;
// init palette
for ( int i = 0; i < 256; i++){
cp.Entries[i] = Color.FromArgb( i, i, i );
}
srcImg.Palette = cp;
}
C#數字圖像處理的3種典型方法(精簡版)
C#數字圖像處理有3種典型方法:提取像素法、內存法、指針法。其中提取像素法使用的是GDI+中的Bitmap.GetPixel和Bitmap.SetPixel方法;內存法是經過LockBits方法來獲取位圖的首地址,從而把圖像數據直接複製到內存中進行處理;指針法與內存法類似,但該方法直接應用指針對位圖進行操做,因爲在默認狀況下,C#不支持指針運算,因此該方法只能在unsafe關鍵字所標記的代碼塊中使用。以一幅真彩色圖像的灰度化爲例,下面代碼分別展示了這3種方法的使用,方便你們學習圖像處理的基本技巧。
(1) 像素提取法
if (curBitmap != null)
{
Color curColor;
int gray;
for (int i = 0; i < curBitmap.Width; i++)
{
for (int j = 0; j < curBitmap.Height; j++)
{
curColor = curBitmap.GetPixel(i, j);
gray = (int)(0.3 * curColor.R + 0.59 * curColor.G * 0.11 * curColor.B);
curBitmap.SetPixel(i, j, curColor);
}
}
}
(2) 內存法
if (curBitmap != null)
{
int width = curBitmap.Width;
int height = curBitmap.Height;
int length = height * 3 * width;
RGB = new byte[length];
BitmapData data = curBitmap.LockBits(new Rectangle(0, 0, width, height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);
System.IntPtr Scan0 = data.Scan0;
System.Runtime.InteropServices.Marshal.Copy(Scan0, RGB, 0, length);
double gray = 0;
for (int i = 0; i < RGB.Length; i=i+3)
{
gray = RGB[i + 2] * 0.3 + RGB[i + 1] * 0.59 + RGB[i] * 0.11;
RGB[i + 2] = RGB[i + 1] = RGB[i] = (byte)gray;
}
System.Runtime.InteropServices.Marshal.Copy(RGB, 0, Scan0, length);
curBitmap.UnlockBits(data);
}
(3) 指針法
if (curBitmap != null)
{
int width = curBitmap.Width;
int height = curBitmap.Height;
BitmapData data = curBitmap.LockBits(new Rectangle(0, 0, width, height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);
System.IntPtr Scan0 = data.Scan0;
int stride = data.Stride;
System.Runtime.InteropServices.Marshal.Copy(Scan0, RGB, 0, length);
unsafe
{
byte* p = (byte*)Scan0;
int offset = stride - width * 3;
double gray = 0;
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
gray = 0.3 * p[2] + 0.59 * p[1] + 0.11 * p[0];
p[2] = p[1] = p[0] = (byte)gray;
p += 3;
}
p += offset;
}
}
curBitmap.UnlockBits(data);
}
在以上3種方法中,提取像素法能直觀的展現圖像處理過程,可讀性很好,但效率最低,並不適合作圖像處理方面的工程應用;內存法把圖像直接複製到內存中,直接對內存中的數據進行處理,速度明顯提升,程序難度也不大;指針法直接應用指針來對圖像進行處理,因此速度最快。
簡單圖片處理函數代碼(C#)
1、生成圖片並實現顏色漸變效果
Response.Clear();
Bitmap imgOutput = new Bitmap(100, 50);
Graphics gic = Graphics.FromImage(imgOutput);
gic.Clear(Color.BlueViolet);
gic.SmoothingMode = System.Drawing.Drawing2D.SmoothingMode.AntiAlias;
gic.DrawString("漸變圖形", new Font("黑體",16,FontStyle.Italic),
new SolidBrush(Color.White),new PointF(2,2));
gic.FillRectangle(new System.Drawing.Drawing2D.LinearGradientBrush(new Point(0,0),
new Point(100,50), Color.FromArgb(0,0,0,0),
Color.FromArgb(255,255,255,255)),0,0,100,50);
imgOutput.Save(Response.OutputStream, System.Drawing.Imaging.ImageFormat.Jpeg);
gic.Dispose();
imgOutput.Dispose();
Response.End();
2、對圖片進行反轉
System.Drawing.Image drawimage = System.Drawing.Image.FromFile(photopath);//photopath表示圖片的物理地址
drawimage.RotateFlip(RotateFlipType.Rotate270FlipNone);
if(File.Exists(photopath))
{
File.SetAttributes(photopath,FileAttributes.Normal);
File.Delete(photopath);
}
drawimage.Save(photopath,System.Drawing.Imaging.ImageFormat.Jpeg);
drawimage.Dispose();
3、對圖片進行縮放
System.Drawing.Image drawimage = System.Drawing.Image.FromFile(photopath);
Bitmap imgOutput = new Bitmap(drawimage,60,30);
imgOutput.Save(newphotppath, System.Drawing.Imaging.ImageFormat.Jpeg);
imgOutput.Dispose();
Response.End();
其餘還有一些畫線、畫矩形、畫圓等的函數和方法均可以在System.Drawing中找到;
本文的實例是一個數字圖像處理的應用程序,它完成的功能包括對圖像顏色的翻轉、對圖像進行灰度處理和對圖像進行增亮處理。該程序對圖像進行處理部分的代碼包含在一個專門的Filters類裏面,經過調用該類裏的靜態成員函數,咱們就能夠實現相應的圖像處理功能了。爲實現圖像處理,咱們要對圖像進行逐個象素處理。咱們知道圖像是由一個個的象素點組成的,對一幅圖像的每一個象素進行了相應的處理,最後整個圖像也就處理好了。在這個過程當中,咱們只需對每一個象素點進行相應的處理,在處理過程當中卻不須要考慮周圍象素點對其的影響,因此相對來講程序的實現就變得簡單多了。
因爲GDI+中的BitmapData類不提供對圖像內部數據的直接訪問的方法,咱們惟一的辦法就是使用指針來得到圖像的內部數據,這時咱們就得運用unsafe這個關鍵字來指明函數中訪問圖像內部數據的代碼塊了。在程序中,我還運用了打開文件和保存文件等選項,以使咱們的辛勤勞動不付之東流。
二.程序的實現:
Invert()、Gray()、Brightness()等三個函數均包含在Filters類裏面,
Invert()函數的算法以下:
public static bool Invert(Bitmap b) { BitmapData bmData = b.LockBits(new Rectangle(0, 0, b.Width, b.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb); int stride = bmData.Stride; System.IntPtr Scan0 = bmData.Scan0; unsafe { byte * p = (byte *)(void *)Scan0; int nOffset = stride - b.Width*3; int nWidth = b.Width * 3; for(int y=0;y<b.Height;++y) { for(int x=0; x < nWidth; ++x ) { p[0] = (byte)(255-p[0]); ++p; } p += nOffset; } } b.UnlockBits(bmData); return true; } |
該函數以及後面的函數的參數都是Bitmap類型的,它們傳值的對象就是程序中所打開的圖像文件了。該函數中的BitmapData類型的bmData包含了圖像文件的內部信息,bmData的Stride屬性指明瞭一條線的寬度,而它的Scan0屬性則是指向圖像內部信息的指針。本函數完成的功能是圖像顏色的翻轉,實現的方法即用255減去圖像中的每一個象素點的值,並將所得值設置爲原象素點處的值,對每一個象素點進行如此的操做,只到整幅圖像都處理完畢。函數中的unsafe代碼塊是整個函數的主體部分,首先咱們取得圖像內部數據的指針,而後設置好偏移量,同時設置nWidth爲b.Width*3,由於每一個象素點包含了三種顏色成分,對每一個象素點進行處理時便要進行三次處理。接下來運用兩個嵌套的for循環完成對每一個象素點的處理,處理的核心即是一句:p[0] = (byte)(255-p[0]);。在unsafe代碼塊後,即可運用b.UnlockBits(bmData)進行圖像資源的釋放。函數執行成功,最後返回true值。注:因爲是要編譯不安全代碼,因此得將項目屬性頁中的"容許不安全代碼塊"屬性設置爲true,
Gray()函數的算法以下:
public static bool Gray(Bitmap b) { BitmapData bmData = b.LockBits(new Rectangle(0, 0, b.Width, b.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb); int stride = bmData.Stride; System.IntPtr Scan0 = bmData.Scan0; unsafe { byte * p = (byte *)(void *)Scan0; int nOffset = stride - b.Width*3; byte red, green, blue; for(int y=0;y<b.Height;++y) { for(int x=0; x < b.Width; ++x ) { blue = p[0]; green = p[1]; red = p[2]; p[0] = p[1] = p[2] = (byte)(.299 * red + .587 * green + .114 * blue); p += 3; } p += nOffset; } } b.UnlockBits(bmData); return true; } |
本函數完成的功能是對圖像進行灰度處理,咱們的基本想法但是將每一個象素點的三種顏色成分的值取平均值。然而因爲人眼的敏感性,這樣徹底取平均值的作法的效果並很差,因此在程序中我取了三個效果最好的參數:.299,.587,.114。不過在這裏要向讀者指明的是,在GDI+中圖像存儲的格式是BGR而非RGB,即其順序爲:Blue、Green、Red。因此在for循環內部必定要設置好red、green、blue等變量的值,切不可顛倒。函數執行成功後,一樣返回true值。
Brightness()函數的算法以下:
public static bool Brightness(Bitmap b, int nBrightness) { if (nBrightness < -255 || nBrightness > 255) return false; BitmapData bmData = b.LockBits(new Rectangle(0, 0, b.Width, b.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb); int stride = bmData.Stride; System.IntPtr Scan0 = bmData.Scan0; int nVal = 0; unsafe { byte * p = (byte *)(void *)Scan0; int nOffset = stride - b.Width*3; int nWidth = b.Width * 3; for(int y=0;y<b.Height;++y) { for(int x=0; x < nWidth; ++x ) { nVal = (int) (p[0] + nBrightness); if (nVal < 0) nVal = 0; if (nVal > 255) nVal = 255; p[0] = (byte)nVal; ++p; } p += nOffset; } } b.UnlockBits(bmData); return true; } |
本函數完成的功能是對圖像進行增亮處理,它比上面兩個函數多了一個增亮參數-nBrightness,該參數由用戶輸入,範圍爲-255~255。在取得了增亮參數後,函數的unsafe代碼部分對每一個象素點的不一樣顏色成分進行逐個處理,即在原來值的基礎上加上一個增亮參數以得到新的值。同時代碼中還有一個防止成分值越界的操做,由於RGB成分值的範圍爲0~255,一旦超過了這個範圍就要從新設置。函數最後執行成功後,一樣得返回true值。
該函數實現的程序效果以下:
首先,咱們把圖像增亮的參數設置爲100(其範圍爲-255~255),而後執行效果以下,讀者也可嘗試其餘的參數值。
三.小結:
本文經過一個簡單的實例向你們展示了用Visual C#以及GDI+完成數字圖像處理的基本方法,經過實例,咱們不難發現合理運用新技術不只能夠大大簡化咱們的編程工做,還能夠提升編程的效率。不過咱們在運用新技術的同時也得明白掌握基本的編程思想纔是最主要的,不一樣的語言、不一樣的機制只是實現的具體方式不一樣而已,其內在的思想仍是相通的。對於上面的例子,掌握了編寫圖像處理函數的算法,用其餘的方式實現也應該是可行的。同時,在上面的基礎上,讀者不妨試着觸類旁通,編寫出更多的圖像處理的函數來,以充實並完善這個簡單的實例。