使用Scrapy抓取數據

原文發表於:http://blog.javachen.com/2014/05/24/using-scrapy-to-cralw-data.htmljavascript

Scrapy是Python開發的一個快速,高層次的屏幕抓取和web抓取框架,用於抓取web站點並從頁面中提取結構化的數據。Scrapy用途普遍,能夠用於數據挖掘、監測和自動化測試。css

Scrapy 使用了 Twisted 異步網絡庫來處理網絡通信。總體架構大體以下(注:圖片來自互聯網):html

scrapy

Scrapy主要包括瞭如下組件:java

  • 引擎,用來處理整個系統的數據流處理,觸發事務。
  • 調度器,用來接受引擎發過來的請求,壓入隊列中,並在引擎再次請求的時候返回。
  • 下載器,用於下載網頁內容,並將網頁內容返回給蜘蛛。
  • 蜘蛛,蜘蛛是主要幹活的,用它來制訂特定域名或網頁的解析規則。
  • 項目管道,負責處理有蜘蛛從網頁中抽取的項目,他的主要任務是清晰、驗證和存儲數據。當頁面被蜘蛛解析後,將被髮送到項目管道,並通過幾個特定的次序處理數據。
  • 下載器中間件,位於Scrapy引擎和下載器之間的鉤子框架,主要是處理Scrapy引擎與下載器之間的請求及響應。
  • 蜘蛛中間件,介於Scrapy引擎和蜘蛛之間的鉤子框架,主要工做是處理蜘蛛的響應輸入和請求輸出。
  • 調度中間件,介於Scrapy引擎和調度之間的中間件,從Scrapy引擎發送到調度的請求和響應。

使用Scrapy能夠很方便的完成網上數據的採集工做,它爲咱們完成了大量的工做,而不須要本身費大力氣去開發。python

1. 安裝

安裝 python

Scrapy 目前最新版本爲0.22.2,該版本須要 python 2.7,故須要先安裝 python 2.7。這裏我使用 centos 服務器來作測試,由於系統自帶了 python ,須要先檢查 python 版本。git

查看python版本:github

bash$ python -V
Python 2.6.6

升級版本到2.7:web

bash$ Python 2.7.6:
$ wget http://python.org/ftp/python/2.7.6/Python-2.7.6.tar.xz
$ tar xf Python-2.7.6.tar.xz
$ cd Python-2.7.6
$ ./configure --prefix=/usr/local --enable-unicode=ucs4 --enable-shared LDFLAGS="-Wl,-rpath /usr/local/lib"
$ make && make altinstall

創建軟鏈接,使系統默認的 python指向 python2.7正則表達式

bash$ mv /usr/bin/python /usr/bin/python2.6.6 
$ ln -s /usr/local/bin/python2.7 /usr/bin/python

再次查看python版本:redis

bash$ python -V
Python 2.7.6

安裝

這裏使用 wget 的方式來安裝 setuptools :

bash$ wget https://bootstrap.pypa.io/ez_setup.py -O - | python

安裝 zope.interface

bash$ easy_install zope.interface

安裝 twisted

Scrapy 使用了 Twisted 異步網絡庫來處理網絡通信,故須要安裝 twisted。

安裝 twisted 前,須要先安裝 gcc:

bash$ yum install gcc -y

而後,再經過 easy_install 安裝 twisted:

bash$ easy_install twisted

若是出現下面錯誤:

bash$ easy_install twisted
Searching for twisted
Reading https://pypi.python.org/simple/twisted/
Best match: Twisted 14.0.0
Downloading https://pypi.python.org/packages/source/T/Twisted/Twisted-14.0.0.tar.bz2#md5=9625c094e0a18da77faa4627b98c9815
Processing Twisted-14.0.0.tar.bz2
Writing /tmp/easy_install-kYHKjn/Twisted-14.0.0/setup.cfg
Running Twisted-14.0.0/setup.py -q bdist_egg --dist-dir /tmp/easy_install-kYHKjn/Twisted-14.0.0/egg-dist-tmp-vu1n6Y
twisted/runner/portmap.c:10:20: error: Python.h: No such file or directory
twisted/runner/portmap.c:14: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘*’ token
twisted/runner/portmap.c:31: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘*’ token
twisted/runner/portmap.c:45: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘PortmapMethods’
twisted/runner/portmap.c: In function ‘initportmap’:
twisted/runner/portmap.c:55: warning: implicit declaration of function ‘Py_InitModule’
twisted/runner/portmap.c:55: error: ‘PortmapMethods’ undeclared (first use in this function)
twisted/runner/portmap.c:55: error: (Each undeclared identifier is reported only once
twisted/runner/portmap.c:55: error: for each function it appears in.)

請安裝 python-devel 而後再次運行:

bash$ yum install python-devel -y
$ easy_install twisted

若是出現下面異常:

error: Not a recognized archive type: /tmp/easy_install-tVwC5O/Twisted-14.0.0.tar.bz2

請手動下載而後安裝,下載地址在這裏

bash$ wget https://pypi.python.org/packages/source/T/Twisted/Twisted-14.0.0.tar.bz2#md5=9625c094e0a18da77faa4627b98c9815
$ tar -vxjf Twisted-14.0.0.tar.bz2
$ cd Twisted-14.0.0
$ python setup.py install

安裝 pyOpenSSL

先安裝一些依賴:

bash$ yum install libffi libffi-devel openssl-devel -y

而後,再經過 easy_install 安裝 pyOpenSSL:

bash$ easy_install pyOpenSSL

安裝 Scrapy

先安裝一些依賴:

bash$ yum install libxml2 libxslt libxslt-devel -y

最後再來安裝 Scrapy :

bash$ easy_install scrapy

2. 使用 Scrapy

在安裝成功以後,你能夠了解一些 Scrapy 的基本概念和使用方法,並學習 Scrapy 項目的例子 dirbot 。

Dirbot 項目位於 https://github.com/scrapy/dirbot,該項目包含一個 README 文件,它詳細描述了項目的內容。若是你熟悉 git,你能夠 checkout 它的源代碼。或者你能夠經過點擊 Downloads 下載 tarball 或 zip 格式的文件。

下面以該例子來描述如何使用 Scrapy 建立一個爬蟲項目。

新建工程

在抓取以前,你須要新建一個 Scrapy 工程。進入一個你想用來保存代碼的目錄,而後執行:

bash$ scrapy startproject tutorial

這個命令會在當前目錄下建立一個新目錄 tutorial,它的結構以下:

.
├── scrapy.cfg
└── tutorial
    ├── __init__.py
    ├── items.py
    ├── pipelines.py
    ├── settings.py
    └── spiders
        └── __init__.py

這些文件主要是:

  • scrapy.cfg: 項目配置文件
  • tutorial/: 項目python模塊, 呆會代碼將從這裏導入
  • tutorial/items.py: 項目items文件
  • tutorial/pipelines.py: 項目管道文件
  • tutorial/settings.py: 項目配置文件
  • tutorial/spiders: 放置spider的目錄

定義Item

Items是將要裝載抓取的數據的容器,它工做方式像 python 裏面的字典,但它提供更多的保護,好比對未定義的字段填充以防止拼寫錯誤。

它經過建立一個 scrapy.item.Item 類來聲明,定義它的屬性爲 scrpy.item.Field 對象,就像是一個對象關係映射(ORM).
咱們經過將須要的item模型化,來控制從 dmoz.org 得到的站點數據,好比咱們要得到站點的名字,url 和網站描述,咱們定義這三種屬性的域。要作到這點,咱們編輯在 tutorial 目錄下的 items.py 文件,咱們的 Item 類將會是這樣

pythonfrom scrapy.item import Item, Field 
class DmozItem(Item):
    title = Field()
    link = Field()
    desc = Field()

剛開始看起來可能會有些困惑,可是定義這些 item 能讓你用其餘 Scrapy 組件的時候知道你的 items 究竟是什麼。

編寫爬蟲(Spider)

Spider 是用戶編寫的類,用於從一個域(或域組)中抓取信息。們定義了用於下載的URL的初步列表,如何跟蹤連接,以及如何來解析這些網頁的內容用於提取items。

要創建一個 Spider,你能夠爲 scrapy.spider.BaseSpider 建立一個子類,並肯定三個主要的、強制的屬性:

  • name:爬蟲的識別名,它必須是惟一的,在不一樣的爬蟲中你必須定義不一樣的名字.
  • start_urls:爬蟲開始爬的一個 URL 列表。爬蟲從這裏開始抓取數據,因此,第一次下載的數據將會從這些 URLS 開始。其餘子 URL 將會從這些起始 URL 中繼承性生成。
  • parse():爬蟲的方法,調用時候傳入從每個 URL 傳回的 Response 對象做爲參數,response 將會是 parse 方法的惟一的一個參數,

這個方法負責解析返回的數據、匹配抓取的數據(解析爲 item )並跟蹤更多的 URL。

在 tutorial/spiders 目錄下建立 DmozSpider.py

pythonfrom scrapy.spider import BaseSpider

class DmozSpider(BaseSpider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]

    def parse(self, response):
        filename = response.url.split("/")[-2]
        open(filename, 'wb').write(response.body)

運行項目

bash$ scrapy crawl dmoz

該命令從 dmoz.org 域啓動爬蟲,第三個參數爲 DmozSpider.py 中的 name 屬性值。

xpath選擇器

Scrapy 使用一種叫作 XPath selectors 的機制,它基於 XPath 表達式。若是你想了解更多selectors和其餘機制你能夠查閱資料

這是一些XPath表達式的例子和他們的含義:

  • /html/head/title: 選擇HTML文檔 <head> 元素下面的 <title> 標籤。
  • /html/head/title/text(): 選擇前面提到的<title> 元素下面的文本內容
  • //td: 選擇全部 <td> 元素
  • //div[@class="mine"]: 選擇全部包含 class="mine" 屬性的div 標籤元素

這只是幾個使用 XPath 的簡單例子,可是實際上 XPath 很是強大。若是你想了解更多 XPATH 的內容,咱們向你推薦這個 XPath 教程

爲了方便使用 XPaths,Scrapy 提供 Selector 類, 有三種方法

  • xpath():返回selectors列表, 每個select表示一個xpath參數表達式選擇的節點.
  • extract():返回一個unicode字符串,該字符串爲XPath選擇器返回的數據
  • re(): 返回unicode字符串列表,字符串做爲參數由正則表達式提取出來
  • css()

提取數據

咱們能夠經過以下命令選擇每一個在網站中的 <li> 元素:

pythonsel.xpath('//ul/li')

而後是網站描述:

pythonsel.xpath('//ul/li/text()').extract()

網站標題:

pythonsel.xpath('//ul/li/a/text()').extract()

網站連接:

pythonsel.xpath('//ul/li/a/@href').extract()

如前所述,每一個 xpath() 調用返回一個 selectors 列表,因此咱們能夠結合 xpath() 去挖掘更深的節點。咱們將會用到這些特性,因此:

pythonsites = sel.xpath('//ul/li')
for site in sites:
    title = site.xpath('a/text()').extract()
    link = site.xpath('a/@href').extract()
    desc = site.xpath('text()').extract()
    print title, link, desc

使用Item

scrapy.item.Item 的調用接口相似於 python 的 dict ,Item 包含多個 scrapy.item.Field。這跟 django 的 Model 與

Item 一般是在 Spider 的 parse 方法裏使用,它用來保存解析到的數據。

最後修改爬蟲類,使用 Item 來保存數據,代碼以下:

pythonfrom scrapy.spider import Spider
from scrapy.selector import Selector

from dirbot.items import Website


class DmozSpider(Spider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/",
    ]

    def parse(self, response):
        """
        The lines below is a spider contract. For more info see:
        http://doc.scrapy.org/en/latest/topics/contracts.html

        @url http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/
        @scrapes name
        """
        sel = Selector(response)
        sites = sel.xpath('//ul[@class="directory-url"]/li')
        items = []

        for site in sites:
            item = Website()
            item['name'] = site.xpath('a/text()').extract()
            item['url'] = site.xpath('a/@href').extract()
            item['description'] = site.xpath('text()').re('-\s([^\n]*?)\\n')
            items.append(item)

        return items

如今,能夠再次運行該項目查看運行結果:

bash$ scrapy crawl dmoz

使用Item Pipeline

在 settings.py 中設置 ITEM_PIPELINES,其默認爲[],與 django 的 MIDDLEWARE_CLASSES 等類似。
從 Spider 的 parse 返回的 Item 數據將依次被 ITEM_PIPELINES 列表中的 Pipeline 類處理。

一個 Item Pipeline 類必須實現如下方法:

  • process_item(item, spider) 爲每一個 item pipeline 組件調用,而且須要返回一個 scrapy.item.Item 實例對象或者拋出一個 scrapy.exceptions.DropItem 異常。當拋出異常後該 item 將不會被以後的 pipeline 處理。參數:

    • item (Item object) – 由 parse 方法返回的 Item 對象
    • spider (BaseSpider object) – 抓取到這個 Item 對象對應的爬蟲對象

也可額外的實現如下兩個方法:

  • open_spider(spider) 當爬蟲打開以後被調用。參數: spider (BaseSpider object) – 已經運行的爬蟲
  • close_spider(spider) 當爬蟲關閉以後被調用。參數: spider (BaseSpider object) – 已經關閉的爬蟲

保存抓取的數據

保存信息的最簡單的方法是經過 Feed exports,命令以下:

bash$ scrapy crawl dmoz -o items.json -t json

除了 json 格式以外,還支持 JSON lines、CSV、XML格式,你也能夠經過接口擴展一些格式。

對於小項目用這種方法也足夠了。若是是比較複雜的數據的話可能就須要編寫一個 Item Pipeline 進行處理了。

全部抓取的 items 將以 JSON 格式被保存在新生成的 items.json 文件中

總結

上面描述瞭如何建立一個爬蟲項目的過程,你能夠參照上面過程聯繫一遍。做爲學習的例子,你還能夠參考這篇文章:scrapy 中文教程(爬cnbeta實例)

這篇文章中的爬蟲類代碼以下:

pythonfrom scrapy.contrib.spiders import CrawlSpider, Rule
from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
from scrapy.selector import Selector

from cnbeta.items import CnbetaItem

class CBSpider(CrawlSpider):
    name = 'cnbeta'
    allowed_domains = ['cnbeta.com']
    start_urls = ['http://www.cnbeta.com']

    rules = (
        Rule(SgmlLinkExtractor(allow=('/articles/.*\.htm', )),
             callback='parse_page', follow=True),
    )

    def parse_page(self, response):
        item = CnbetaItem()
        sel = Selector(response)
        item['title'] = sel.xpath('//title/text()').extract()
        item['url'] = response.url
        return item

須要說明的是:

  • 該爬蟲類繼承的是 CrawlSpider 類,而且定義規則,rules指定了含有 /articles/.*\.htm 的連接都會被匹配。
  • 該類並無實現parse方法,而且規則中定義了回調函數 parse_page,你能夠參考更多資料瞭解 CrawlSpider 的用法

3. 學習資料

接觸 Scrapy,是由於想爬取一些知乎的數據,最開始的時候搜索了一些相關的資料和別人的實現方式。

Github 上已經有人或多或少的實現了對知乎數據的爬取,我搜索到的有如下幾個倉庫:

其餘資料:

scrapy 和 javascript 交互例子:

還有一些待整理的知識點:

  • 如何先登錄再爬數據
  • 如何使用規則作過濾
  • 如何遞歸爬取數據
  • scrapy的參數設置和優化
  • 如何實現分佈式爬取

4. 總結

以上就是最近幾天學習 Scrapy 的一個筆記和知識整理,參考了一些網上的文章才寫成此文,對此表示感謝,也但願這篇文章可以對你有所幫助。若是你有什麼想法,歡迎留言;若是喜歡此文,請幫忙分享,謝謝!

相關文章
相關標籤/搜索