參考: https://www.tensorflow.org/programmers_guide/variable_scopedom
TensorFlow中的變量通常就是模型的參數。當模型複雜的時候共享變量會無比複雜。ide
官網給了一個case,當建立兩層卷積的過濾器時,每輸入一次圖片就會建立一次過濾器對應的變量,可是咱們但願全部圖片都共享同一過濾器變量,一共有4個變量:conv1_weights, conv1_biases, conv2_weights, and conv2_biases。函數
一般的作法是將這些變量設置爲全局變量。可是存在的問題是打破封裝性,這些變量必須文檔化被其餘代碼文件引用,一旦代碼變化,調用方也可能須要變化。還有一種保證封裝性的方式是將模型封裝成類。ui
不過TensorFlow提供了Variable Scope 這種獨特的機制來共享變量。這個機制涉及兩個主要函數:spa
#建立或返回給定名稱的變量 tf.get_variable(<name>, <shape>, <initializer>) #管理傳給get_variable()的變量名稱的做用域 tf.variable_scope(<scope_name>)
在下面的代碼中,經過tf.get_variable()建立了名稱分別爲weights和biases的兩個變量。code
def conv_relu(input, kernel_shape, bias_shape): # Create variable named "weights". weights = tf.get_variable("weights", kernel_shape, initializer=tf.random_normal_initializer()) # Create variable named "biases". biases = tf.get_variable("biases", bias_shape, initializer=tf.constant_initializer(0.0)) conv = tf.nn.conv2d(input, weights, strides=[1, 1, 1, 1], padding='SAME') return tf.nn.relu(conv + biases)
可是咱們須要兩個卷積層,這時能夠經過tf.variable_scope()指定做用域進行區分,如with tf.variable_scope("conv1")這行代碼指定了第一個卷積層做用域爲conv1,在這個做用域下有兩個變量weights和biases。orm
def my_image_filter(input_images): with tf.variable_scope("conv1"): # Variables created here will be named "conv1/weights", "conv1/biases". relu1 = conv_relu(input_images, [5, 5, 32, 32], [32]) with tf.variable_scope("conv2"): # Variables created here will be named "conv2/weights", "conv2/biases". return conv_relu(relu1, [5, 5, 32, 32], [32])
最後在image_filters這個做用域重複使用第一張圖片輸入時建立的變量,調用函數reuse_variables(),代碼以下:對象
with tf.variable_scope("image_filters") as scope: result1 = my_image_filter(image1) scope.reuse_variables() result2 = my_image_filter(image2)
tf.get_variable()工做機制是這樣的:blog
當tf.get_variable_scope().reuse == False,調用該函數會建立新的變量圖片
with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) assert v.name == "foo/v:0"
當tf.get_variable_scope().reuse == True,調用該函數會重用已經建立的變量
with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) with tf.variable_scope("foo", reuse=True): v1 = tf.get_variable("v", [1]) assert v1 is v
變量都是經過做用域/變量名來標識,後面會看到做用域能夠像文件路徑同樣嵌套。
tf.variable_scope()用來指定變量的做用域,做爲變量名的前綴,支持嵌套,以下:
with tf.variable_scope("foo"): with tf.variable_scope("bar"): v = tf.get_variable("v", [1]) assert v.name == "foo/bar/v:0"
當前環境的做用域能夠經過函數tf.get_variable_scope()獲取,而且reuse標誌能夠經過調用reuse_variables()設置爲True,這個很是有用,以下
with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) tf.get_variable_scope().reuse_variables() v1 = tf.get_variable("v", [1]) assert v1 is v
做用域中的resuse默認是False,調用函數reuse_variables()可設置爲True,一旦設置爲True,就不能返回到False,而且該做用域的子空間reuse都是True。若是不想重用變量,那麼能夠退回到上層做用域,至關於exit當前做用域,如
with tf.variable_scope("root"): # At start, the scope is not reusing. assert tf.get_variable_scope().reuse == False with tf.variable_scope("foo"): # Opened a sub-scope, still not reusing. assert tf.get_variable_scope().reuse == False with tf.variable_scope("foo", reuse=True): # Explicitly opened a reusing scope. assert tf.get_variable_scope().reuse == True with tf.variable_scope("bar"): # Now sub-scope inherits the reuse flag. assert tf.get_variable_scope().reuse == True # Exited the reusing scope, back to a non-reusing one. assert tf.get_variable_scope().reuse == False
一個做用域能夠做爲另外一個新的做用域的參數,如:
with tf.variable_scope("foo") as foo_scope: v = tf.get_variable("v", [1]) with tf.variable_scope(foo_scope): w = tf.get_variable("w", [1]) with tf.variable_scope(foo_scope, reuse=True): v1 = tf.get_variable("v", [1]) w1 = tf.get_variable("w", [1]) assert v1 is v assert w1 is w
無論做用域如何嵌套,當使用with tf.variable_scope()打開一個已經存在的做用域時,就會跳轉到這個做用域。
with tf.variable_scope("foo") as foo_scope: assert foo_scope.name == "foo" with tf.variable_scope("bar"): with tf.variable_scope("baz") as other_scope: assert other_scope.name == "bar/baz" with tf.variable_scope(foo_scope) as foo_scope2: assert foo_scope2.name == "foo" # Not changed.
variable scope的Initializers能夠創遞給子空間和tf.get_variable()函數,除非中間有函數改變,不然不變。
with tf.variable_scope("foo", initializer=tf.constant_initializer(0.4)): v = tf.get_variable("v", [1]) assert v.eval() == 0.4 # Default initializer as set above. w = tf.get_variable("w", [1], initializer=tf.constant_initializer(0.3)): assert w.eval() == 0.3 # Specific initializer overrides the default. with tf.variable_scope("bar"): v = tf.get_variable("v", [1]) assert v.eval() == 0.4 # Inherited default initializer. with tf.variable_scope("baz", initializer=tf.constant_initializer(0.2)): v = tf.get_variable("v", [1]) assert v.eval() == 0.2 # Changed default initializer.
算子(ops)會受變量做用域(variable scope)影響,至關於隱式地打開了同名的名稱做用域(name scope),如+這個算子的名稱爲foo/add
with tf.variable_scope("foo"): x = 1.0 + tf.get_variable("v", [1]) assert x.op.name == "foo/add"
除了變量做用域(variable scope),還能夠顯式打開名稱做用域(name scope),名稱做用域僅僅影響算子的名稱,不影響變量的名稱。另外若是tf.variable_scope()傳入字符參數,建立變量做用域的同時會隱式建立同名的名稱做用域。以下面的例子,變量v的做用域是foo,而算子x的算子變爲foo/bar,由於有隱式建立名稱做用域foo
with tf.variable_scope("foo"): with tf.name_scope("bar"): v = tf.get_variable("v", [1]) x = 1.0 + v assert v.name == "foo/v:0" assert x.op.name == "foo/bar/add"
注意: 若是tf.variable_scope()傳入的不是字符串而是scope對象,則不會隱式建立同名的名稱做用域。