個人面試準備過程--隊列與棧(更新中)

  • 堆棧和隊列統稱線性表數組

    • 簡單的線性結構數據結構

      • 數組和鏈表能夠實現這兩種數據結構this

  • 堆棧設計

    • 基本理解code

    • DFS遞歸

      • 深度優先---按深度遍歷隊列

      • 遞歸轉非遞歸element

  • 隊列rem

    • 基本理解it

    • BFS

      • 廣度優先---按層序遍歷

  • 出入棧的合法性
    模擬出入棧的過程,不是入棧,就是出棧,否則就不合法

    public boolean isPossible(int[] in, int[] out){
        if(in.length != out.length){
            return false;
        }
        
        Stack<Integer> s = new Stack<>();
        for(int i = 0, j = 0;j < out.length; j++){
            //若是不是入棧的
            while(s.isEmpty() && s.peek() != out[j]){
                if(i >= in.length){
                    return false;
                }
                s.push(in[i++]);
            }
            //那就出棧
            s.pop();
        }
        
        return true;
    }
  • 兩個棧實現隊列

    public class MyQueue{
            Stack<Integer> s1 = new Stack<>();
            Stack<Integer> s2 = new Stack<>();
    
            public void push(int x){
                s1.push(x);
            }
    
            //負負得正
            public int pop(){
                if(s2.isEmpty()){
                    while(!s1.isEmpty()){
                        s2.push(s1.pop());
                    }
                }
                return s2.pop();
            }
    
            public int peek(){
                if(s2.isEmpty()){
                    while(!s1.isEmpty()){
                        s2.push(s1.pop());
                    }
                }
                return s2.peek();
            }
    
            public boolean empty(){
                return s1.isEmpty() && s2.isEmpty();
            }
    
        }
  • 兩個隊列實現棧

    public class MyStack {
        Queue<Integer> queue1;
        Queue<Integer> queue2;
        /** Initialize your data structure here. */
        public MyStack() {
            queue1 = new LinkedList<>();
            queue2 = new LinkedList<>();
        }
        
        /** Push element x onto stack. */
        public void push(int x) {
            if(!queue1.isEmpty()){
                queue1.offer(x);
            }else{
                queue2.offer(x);
            }
        }
        
        /** Removes the element on top of the stack and returns that element. */
        public int pop() {
            if(queue1.size() != 0){
                while(queue1.size() > 1){
                    queue2.add(queue1.peek());
                    queue1.poll();
                }
                return queue1.remove();
            }else{
                while(queue2.size() > 1){
                    queue1.add(queue2.peek());
                    queue2.poll();
                }
                return queue2.remove();
            }
        }
        
        /** Get the top element. */
        public int top() {
            if(queue1.size() != 0){
                while(queue1.size() > 1){
                    queue2.add(queue1.poll());
                }
                int res = queue1.peek();
                queue2.add(queue1.poll());
                return res;
            }else{
                while(queue2.size() > 1){
                    queue1.add(queue2.poll());
                }
                int res = queue2.peek();
                queue1.add(queue2.poll());
                return res;
            }
        }
        
        /** Returns whether the stack is empty. */
        public boolean empty() {
            return queue1.isEmpty() && queue2.isEmpty();
        }
    }
  • 設計一個棧,除pop與push方法,還支持min方法,可返回棧元素中的最小值。push、pop和min三個方法的時間複雜度必須爲O(1)

    兩種解法,解法一,將最小值存入自有的數據結構中,以下所示

    public class MyStack extends Stack<NodeWithMin>{
        
        public void push(int value){
            int newMin = Math.min(value, min());
            super.push(new NodeWithMin(value, newMin));
        }
        
        public int min(){
            if(this.isEmpty()){
                return Integer.MAX_VALUE;
            }else{
                return peek().min;
            }
        }
        
        public int pop(){
            super.pop().value;
        }
    }
    
    class NodeWithMin{
        int value;//本來的值
        int min;//最小值
        public NodeWithMin(int value, int min){
            this.value = value;
            this.min = min;
        }
    }

    解法二,用兩個棧

    public class MyStack{
            Stack<Integer> s1 = new Stack<>();
            Stack<Integer> s2 = new Stack<>();
    
            public void push(int i){
                    s1.push(i);
                    if(s2.isEmpty() || min() >= i){
                            s2.push(i);
                    }
            }
    
            public int pop(){
                    if(s1.peek() == min()){
                            s2.pop();
                    }
    
                    return s1.pop();
            }
    
            public int min(){
                    return s2.peek();
            }
    
    }
相關文章
相關標籤/搜索