分析:遞歸分治,第一層須要找到相應的遍歷結果,對數組來講,問題轉化爲找下標問題
對前序、中序遍歷結果來講
前序:[root,[左],[右]]
中序:[[左],root,[右]]
所以,中序中root的下標可求,爲inorderPos數組
對每一層來講,左子樹的長度爲leftLen = inorderPos,右子樹的長度爲rightLen = inorder.length - 1 - leftLen, 左子樹前序爲preorder[1 至 leftLen],中序爲inorder[0 至 leftLen - 1],能夠使用System.arraycopy(preorder, 1, leftPre, 0, leftLen), System.arraycopy(inorder, 0, leftInorder, 0, leftLen); 右子樹前序爲preorder[leftLen + 1 至 preorder.length - 1],中序爲inorder[leftLen + 1 至 inorder.lenth - 1],能夠使用System.arraycopy(preorder, leftLen + 1, rightPre, 0, rightLen),System.arraycopy(inorder, leftLen + 1, rightInorder, 0, rightLen);
對中序、後序來講,
中序:[[左],root,[右]]
後序:[[左],[右],root]函數
public TreeNode buildTree(int[] preorder, int[] inorder) { if(preorder.length == 0 || inorder.length == 0 || preorder.length != inorder.length){ return null; } int len = preorder.length; TreeNode root = new TreeNode(preorder[0]); int inorderPos = 0; for(; inorderPos < inorder.length; inorderPos++){ if(inorder[inorderPos] == root.val){ break; } } int leftLen = inorderPos; int rightLen = len - inorderPos - 1; int[] leftPre = new int[leftLen]; int[] leftInorder = new int[leftLen]; int[] rightPre = new int[rightLen]; int[] rightInorder = new int[rightLen]; for(int i = 0; i < leftLen; i++){ leftPre[i] = preorder[i + 1]; leftInorder[i] = inorder[i]; } for(int i = 0; i < rightLen; i++){ rightPre[i] = preorder[leftLen + 1 + i]; rightInorder[i] = inorder[leftLen + 1 + i]; } TreeNode left = buildTree(leftPre, leftInorder); TreeNode right = buildTree(rightPre, rightInorder); root.left = left; root.right = right; return root; }
public TreeNode buildTree(int[] inorder, int[] postorder) { if(inorder.length == 0 || postorder.length == 0){ return null; } int len = postorder.length; TreeNode root = new TreeNode(postorder[len - 1]); int inorderPos = 0; for(; inorderPos < len; inorderPos++){ if(inorder[inorderPos] == root.val){ break; } } int leftLength = inorderPos; int rightLength = len - inorderPos - 1; int[] leftInorder = new int[leftLength]; int[] leftPost = new int[leftLength]; int[] rightInorder = new int[rightLength]; int[] rightPost = new int[rightLength]; for(int i = 0; i < leftLength; i++){ leftInorder[i] = inorder[i]; leftPost[i] = postorder[i]; } for(int i = 0; i < rightLength; i++){ rightInorder[i] = inorder[inorderPos + 1 + i]; rightPost[i] = postorder[leftLength + i]; } TreeNode left = buildTree(leftInorder, leftPost); TreeNode right = buildTree(rightInorder, rightPost); root.left = left; root.right = right; return root; }
思路:
分治:對於每個結點來講,須要計算,當前值+左結點+右結點 與 最大值的比較,同時,左結點與右結點的值經過遞歸獲得,所以,遞歸的返回值應是一條路徑的和post
public class Solution{ int maxNum = Integer.MIN_VALUE; public int maxPathSum(TreeNode root){ if(root == null){ return 0; } count(root); return maxNum; } public int count(TreeNode root){ int lval = Integer.MIN_VALUE, rval = Integer.MIN_VALUE; int val = root.val; if(root.left != null){ lval = count(root.left); } if(root.right != null){ rval = count(root.right); } val = val + Math.max(lval, 0) + Math.max(rval, 0); if(val > maxNum){ maxNum = val; } return root.val + Math.max(Math.max(lval, rval), 0); } }
遞歸法:
思路:ui
退出條件指針
root == null,直接返回0,可是!若是root.left或root.right其中一個爲null,不能退出遞歸,兩種解決方法
方法一:使用新的遞歸函數規避code
public int minDepth(TreeNode root){ if(root == null){ return 0; } return getMin(root); } public int getMin(TreeNode root){ //規避左右子樹某一個爲null if(root == null){ return Integer.MAX_VALUE;//排除此條路徑 } if(root.left == null && root.right == null){ return 1; } int left = Integer.MAX_VALUE; int right = Integer.MAX_VALUE; if(root.left != null){ left = getMin(root.left); } if(root.right != null){ right = getMin(root.right); } return Math.min(left, right) + 1; }
方法二:給當前方法打補丁遞歸
public int minDepth(TreeNode root) { if(root == null){ return 0; } if(root.left == null && root.right == null){ return 1; } if(root.left == null){ return minDepth(root.right) + 1; }else if(root.right == null){ return minDepth(root.left) + 1; }else{ return Math.min(minDepth(root.left), minDepth(root.right)) + 1; } }
root.left == null && root.right == null 說明爲葉子結點,返回1leetcode
當前層數加 左右子樹的最小深度get
迭代法
思路:層級遍歷,一旦在當前層發現葉子結點,返回層數io
public int minDepth(TreeNode root){ if(root == null){ return 0; } if(root.left == null && root.right == null){ return 1; } int depth = 0; int curLevelNodes = 1; int nextLevelNodes = 0; Queue<TreeNode> queue = new LinkedList<>(); queue.add(root); while(!queue.isEmpty()){ TreeNode cur = queue.poll(); curLevelNodes--; if(cur.left == null && cur.right == null){ return depth + 1; } if(cur.left != null){ queue.add(cur.left); nextLevelNodes++; } if(cur.right != null){ queue.add(cur.right); nextLevelNodes++; } if(curLevelNodes == 0){ depth++; curLevelNodes = nextLevelNodes; nextLevelNodes = 0; } } return depth; }
遞歸法
思路:遞歸時邏輯是一向的
public int getMaxDepth(TreeNode root){ if(root == null){ return 0; } return Math.max(getMaxDepth(root.left), getMaxDepth(root.right)) + 1; }
迭代法
思路:層級遍歷求最大深度
public int maxDepth(TreeNode root){ if(root == null){ return 0; } if(root.left == null && root.right == null){ return 1; } int depth = 0; int curLevelNodes = 1; int nextLevelNodes = 0; Queue<TreeNode> queue = new LinkedList<>(); queue.add(root); while(!queue.isEmpty()){ TreeNode cur = queue.poll(); curLevelNodes--; if(cur.left != null){ queue.add(cur.left); nextLevelNodes++; } if(cur.right != null){ queue.add(cur.right); nextLevelNodes++; } if(curLevelNodes == 0){ depth++; curLevelNodes = nextLevelNodes; nextLevelNodes = 0; } } return depth; }
樹平衡要求對全部結點來講,其左右子樹的深度差不超過1
public boolean isBalanced(TreeNode root){ if(root == null){ return true; } int leftDepth = getMaxDepth(root.left); int rightDepth = getMaxDepth(root.right); if(Math.abs(leftDepth - rightDepth) > 1){ return false; } return isBalanced(root.left) && isBalanced(root.right); }
分析:樹的相同,首先結構相同,其次結點值相同
兩種判斷結構是否相同的寫法,邏輯同樣
方法一
public boolean isSame(TreeNode r1, TreeNode r2){ if(r1 == null && r2 == null){ return true; } if(r1 == null || r2 == null){ return false; } //else 結構相同 }
方法二
public boolean isSame(TreeNode r1, TreeNode r2){ if(r1 == null){ return r2 == null; } if(r2 == null){ return false; } //else 結構相同 }
完整邏輯
public boolean isSame(TreeNode r1, TreeNode r2){ if(r1 == null){ return r2 == null; } if(r2 == null){ return false; } return r1.val == r2.val && isSame(r1.left, r2.left) && isSame(r1.right, r2.right); }
左右子樹,結構相同,對稱位置值相同
public boolean isSymmetric(TreeNode root) { if(root == null){ return true; } return help(root.left, root.right); } public boolean help(TreeNode p, TreeNode q){ if(p == null){ return q == null; } if(q == null){ return false; } return p.val == q.val && help(p.left, q.right) && help(p.right, q.left); }
迭代法
思路:中序遍歷 前一個結點值小於後面的結點值
public boolean isValidBST(TreeNode root){ if(root == null){ return true; } Stack<TreeNode> stack = new Stack<>(); TreeNode cur = root; TreeNode preCur = null; while(true){ while(cur != null){ stack.push(cur); cur = cur.left; } if(stack.isEmpty()){ break; } cur = stack.pop(); if(preCur != null){ if(preCur.val >= cur.val){ return false; } } preCur = cur; cur = cur.right; } return true; }
遞歸法
思路:一樣是中序遍歷
思考 pre結點在哪賦值,賦值前如何處理
TreeNode pre = null; public boolean isValidBST(TreeNode root) { if(root == null){ return true; } if(root.left == null && root.right == null){ return true; } return help(root); } public boolean help(TreeNode root){ if(root == null){ return true; } boolean left = help(root.left); if(pre != null && pre.val >= root.val){ return false; } pre = root; boolean right = help(root.right); return left && right; }
思路:斷開每個結點,從用一個指針遞歸地向下指,每次都只更新右結點,遞歸順序爲先左子樹,後右子樹
TreeNode pointer = new TreeNode(-1); public void flatten(TreeNode root){ if(root == null){ return; } TreeNode left = root.left; TreeNode right = root.right; root.left = null; root.right = null; pointer.right = root; pointer = root; flatten(root.left); flatten(root.right); }
O(nlogn)解法
public TreeNode sortedListToBST(ListNode head){ if(head == null){ return null; } if(head.next == null){ return new TreeNode(head.val); } int length = 0; ListNode cur = head; while(cur != null){ cur = cur.next; length++; } return help(head, length); } public TreeNode help(ListNode head, int length){ if(length == 0){ return null; } ListNode now = head; for(int i = 0; i < (length - 1) >> 1; i++){ now = now.next; } TreeNode root = new TreeNode(now.val); TreeNode left = help(head, (length - 1) >> 1); TreeNode right = help(now.next, length >> 1); root.left = left; root.right = right; return root; }
O(n)解法
將鏈表先轉成數組
public TreeNode sortedArrayToBST(int[] nums) { if(nums.length == 0){ return null; } if(nums.length == 1){ return new TreeNode(nums[0]); } int length = nums.length; int now = nums[(length - 1) >> 1]; TreeNode root = new TreeNode(now); int leftLen = (length - 1) >> 1; int rightLen = length >> 1; int[] leftArr = new int[leftLen]; int[] rightArr = new int[rightLen]; System.arraycopy(nums, 0, leftArr, 0, leftLen); System.arraycopy(nums, leftLen + 1, rightArr, 0, rightLen); root.left = sortedArrayToBST(leftArr); root.right = sortedArrayToBST(rightArr); return root; }