JavaShuo
欄目
標籤
非參數估計---直方圖法、Kn近鄰估計法、Parzen窗法
時間 2020-12-30
標籤
機器學習
简体版
原文
原文鏈接
當需要估計的概率密度函數的形式未知,比如我們並不能知道樣本的分佈形式時,我們就無法用最大似然估計方法或貝葉斯估計方法來進行參數估計,而應該用非參數估計方法。這裏就介紹三種非參數估計方法。 需要知道的是,作爲非參數方法的共同問題是對樣本數量需求較大,只要樣本數目足夠大衆可以保證收斂於任何複雜的位置密度,但是計算量和存儲量都比較大。當樣本數很少時,如果能夠對密度函數有先驗認識,則參數估計能取得更好的
>>阅读原文<<
相關文章
1.
直方圖法、Kn近鄰估計法、Parzen窗法
2.
非參數估計法之 parzen窗方法和k近鄰方法估計機率密度
3.
非參數估計法之 parzen窗方法和k近鄰方法估計概率密度
4.
參數估計方法和非參數估計方法
5.
非參數估計——核密度估計(Parzen窗)
6.
機器學習 —— 基礎整理(三)生成式模型的非參數方法: Parzen窗估計、k近鄰估計;k近鄰分類器
7.
018 參數估計之點估計法:矩估計法、最大似然估計
8.
K近鄰估計
9.
機率密度估計--參數估計與非參數估計
10.
概率密度估計--參數估計與非參數估計
更多相關文章...
•
ASP Contents.Remove 方法
-
ASP 教程
•
ASP Contents.RemoveAll 方法
-
ASP 教程
•
算法總結-滑動窗口
•
算法總結-回溯法
相關標籤/搜索
估計
計算方法
計數法
非法
方法
圖法
塊計算方法
KNN近鄰算法
PHP參考手冊
PHP教程
NoSQL教程
算法
計算
設計模式
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
No provider available from registry 127.0.0.1:2181 for service com.ddbuy.ser 解決方法
2.
Qt5.7以上調用虛擬鍵盤(支持中文),以及源碼修改(可拖動,水平縮放)
3.
軟件測試面試- 購物車功能測試用例設計
4.
ElasticSearch(概念篇):你知道的, 爲了搜索…
5.
redux理解
6.
gitee創建第一個項目
7.
支持向量機之硬間隔(一步步推導,通俗易懂)
8.
Mysql 異步複製延遲的原因及解決方案
9.
如何在運行SEPM配置嚮導時將不可認的複雜數據庫密碼改爲簡單密碼
10.
windows系統下tftp服務器使用
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
直方圖法、Kn近鄰估計法、Parzen窗法
2.
非參數估計法之 parzen窗方法和k近鄰方法估計機率密度
3.
非參數估計法之 parzen窗方法和k近鄰方法估計概率密度
4.
參數估計方法和非參數估計方法
5.
非參數估計——核密度估計(Parzen窗)
6.
機器學習 —— 基礎整理(三)生成式模型的非參數方法: Parzen窗估計、k近鄰估計;k近鄰分類器
7.
018 參數估計之點估計法:矩估計法、最大似然估計
8.
K近鄰估計
9.
機率密度估計--參數估計與非參數估計
10.
概率密度估計--參數估計與非參數估計
>>更多相關文章<<