【算子功能描述】fetch
tf.nn.relu_layer( x, // 2D [batch, in_units] weights, // 2D [batch, out_units] biases, // 1D [out_units] name=None )
計算公式爲: relu(matmul(x, weights) + biases). 輸出shape爲[batch, out_units]code
【示例代碼】blog
# -*- coding:utf-8 -*- import tensorflow as tf import numpy as np img = np.reshape(np.asarray(list(range(3*5))).astype(np.float32),newshape=(3,5)) weight = np.reshape(np.asarray(list(range(5*3))).astype(np.float32),newshape=(5,3)) bias = np.reshape(np.asarray(list(range(3))).astype(np.float32),newshape=(3,)) x = tf.placeholder(shape=(3,5),dtype=tf.float32) y = tf.placeholder(shape=(5,3),dtype=tf.float32) z = tf.placeholder(shape=(3,),dtype=tf.float32) y1 = tf.nn.relu_layer(x,y,z) with tf.Session() as sess: out= sess.run(fetches=y1,feed_dict={x:img,y:weight,z:bias}) print(out) tf.train.write_graph(graph_or_graph_def=sess.graph,logdir="./",name="./model/relu_layer.pb",as_text=False)
【模型以下】utf-8